Extensions 1→N→G→Q→1 with N=C2xD40 and Q=C2

Direct product G=NxQ with N=C2xD40 and Q=C2
dρLabelID
C22xD40160C2^2xD40320,1412

Semidirect products G=N:Q with N=C2xD40 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD40):1C2 = C20:4D8φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40):1C2320,322
(C2xD40):2C2 = D20:13D4φ: C2/C1C2 ⊆ Out C2xD4080(C2xD40):2C2320,359
(C2xD40):3C2 = D20:14D4φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40):3C2320,361
(C2xD40):4C2 = D4:D20φ: C2/C1C2 ⊆ Out C2xD4080(C2xD40):4C2320,400
(C2xD40):5C2 = D20:3D4φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40):5C2320,413
(C2xD40):6C2 = D20:4D4φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40):6C2320,438
(C2xD40):7C2 = C4:D40φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40):7C2320,470
(C2xD40):8C2 = C2xD80φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40):8C2320,529
(C2xD40):9C2 = C40:29D4φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40):9C2320,742
(C2xD40):10C2 = C8:D20φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40):10C2320,339
(C2xD40):11C2 = D80:C2φ: C2/C1C2 ⊆ Out C2xD40804+(C2xD40):11C2320,535
(C2xD40):12C2 = C40:3D4φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40):12C2320,762
(C2xD40):13C2 = D4.4D20φ: C2/C1C2 ⊆ Out C2xD40804+(C2xD40):13C2320,769
(C2xD40):14C2 = C2xC8:D10φ: C2/C1C2 ⊆ Out C2xD4080(C2xD40):14C2320,1418
(C2xD40):15C2 = D4.12D20φ: C2/C1C2 ⊆ Out C2xD40804+(C2xD40):15C2320,1424
(C2xD40):16C2 = C8:7D20φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40):16C2320,510
(C2xD40):17C2 = C2xC5:D16φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40):17C2320,773
(C2xD40):18C2 = C40:5D4φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40):18C2320,778
(C2xD40):19C2 = C2xD5xD8φ: C2/C1C2 ⊆ Out C2xD4080(C2xD40):19C2320,1426
(C2xD40):20C2 = C2xQ8.D10φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40):20C2320,1437
(C2xD40):21C2 = C8.21D20φ: C2/C1C2 ⊆ Out C2xD40804+(C2xD40):21C2320,524
(C2xD40):22C2 = D8:D10φ: C2/C1C2 ⊆ Out C2xD40804+(C2xD40):22C2320,820
(C2xD40):23C2 = D8:15D10φ: C2/C1C2 ⊆ Out C2xD40804+(C2xD40):23C2320,1441
(C2xD40):24C2 = C8:2D20φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40):24C2320,492
(C2xD40):25C2 = C40:9D4φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40):25C2320,803
(C2xD40):26C2 = C2xD40:C2φ: C2/C1C2 ⊆ Out C2xD4080(C2xD40):26C2320,1431
(C2xD40):27C2 = C2xD40:7C2φ: trivial image160(C2xD40):27C2320,1413

Non-split extensions G=N.Q with N=C2xD40 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD40).1C2 = D40:7C4φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40).1C2320,67
(C2xD40).2C2 = C8.8D20φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40).2C2320,323
(C2xD40).3C2 = D20.12D4φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40).3C2320,446
(C2xD40).4C2 = D20.19D4φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40).4C2320,471
(C2xD40).5C2 = C2xC16:D5φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40).5C2320,530
(C2xD40).6C2 = D40.4C4φ: C2/C1C2 ⊆ Out C2xD40804+(C2xD40).6C2320,74
(C2xD40).7C2 = D40:9C4φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40).7C2320,338
(C2xD40).8C2 = C40.5D4φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40).8C2320,49
(C2xD40).9C2 = D40:12C4φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40).9C2320,499
(C2xD40).10C2 = C2xC5:SD32φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40).10C2320,805
(C2xD40).11C2 = C40.28D4φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40).11C2320,818
(C2xD40).12C2 = D40.6C4φ: C2/C1C2 ⊆ Out C2xD40804+(C2xD40).12C2320,53
(C2xD40).13C2 = D40:15C4φ: C2/C1C2 ⊆ Out C2xD40160(C2xD40).13C2320,496
(C2xD40).14C2 = C4xD40φ: trivial image160(C2xD40).14C2320,319

׿
x
:
Z
F
o
wr
Q
<