Copied to
clipboard

G = C5×D8⋊C4order 320 = 26·5

Direct product of C5 and D8⋊C4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C5×D8⋊C4, D83C20, C83(C2×C20), C4031(C2×C4), (C5×D8)⋊15C4, D42(C2×C20), (C4×D4)⋊2C10, C8⋊C42C10, C4.Q83C10, (D4×C20)⋊31C2, (C2×D8).6C10, C2.17(D4×C20), (C10×D8).13C2, (C2×C20).458D4, C10.149(C4×D4), D4⋊C416C10, C42.10(C2×C10), C4.14(C22×C20), C22.56(D4×C10), C20.261(C4○D4), (C4×C20).251C22, (C2×C40).331C22, C20.218(C22×C4), (C2×C20).909C23, C10.130(C8⋊C22), (D4×C10).293C22, C4.6(C5×C4○D4), (C5×D4)⋊25(C2×C4), (C5×C8⋊C4)⋊11C2, (C5×C4.Q8)⋊12C2, C2.5(C5×C8⋊C22), C4⋊C4.50(C2×C10), (C2×C8).20(C2×C10), (C2×C4).104(C5×D4), (C5×D4⋊C4)⋊39C2, (C2×D4).51(C2×C10), (C2×C10).632(C2×D4), (C5×C4⋊C4).371C22, (C2×C4).84(C22×C10), SmallGroup(320,943)

Series: Derived Chief Lower central Upper central

C1C4 — C5×D8⋊C4
C1C2C22C2×C4C2×C20C5×C4⋊C4C5×D4⋊C4 — C5×D8⋊C4
C1C2C4 — C5×D8⋊C4
C1C2×C10C4×C20 — C5×D8⋊C4

Generators and relations for C5×D8⋊C4
 G = < a,b,c,d | a5=b8=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, dbd-1=b5, dcd-1=b4c >

Subgroups: 250 in 132 conjugacy classes, 70 normal (26 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, C2×C4, D4, D4, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C20, C20, C2×C10, C2×C10, C8⋊C4, D4⋊C4, C4.Q8, C4×D4, C2×D8, C40, C40, C2×C20, C2×C20, C2×C20, C5×D4, C5×D4, C22×C10, D8⋊C4, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×C40, C5×D8, C22×C20, D4×C10, C5×C8⋊C4, C5×D4⋊C4, C5×C4.Q8, D4×C20, C10×D8, C5×D8⋊C4
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, C23, C10, C22×C4, C2×D4, C4○D4, C20, C2×C10, C4×D4, C8⋊C22, C2×C20, C5×D4, C22×C10, D8⋊C4, C22×C20, D4×C10, C5×C4○D4, D4×C20, C5×C8⋊C22, C5×D8⋊C4

Smallest permutation representation of C5×D8⋊C4
On 160 points
Generators in S160
(1 127 159 36 151)(2 128 160 37 152)(3 121 153 38 145)(4 122 154 39 146)(5 123 155 40 147)(6 124 156 33 148)(7 125 157 34 149)(8 126 158 35 150)(9 116 140 17 132)(10 117 141 18 133)(11 118 142 19 134)(12 119 143 20 135)(13 120 144 21 136)(14 113 137 22 129)(15 114 138 23 130)(16 115 139 24 131)(25 86 46 91 51)(26 87 47 92 52)(27 88 48 93 53)(28 81 41 94 54)(29 82 42 95 55)(30 83 43 96 56)(31 84 44 89 49)(32 85 45 90 50)(57 80 112 71 102)(58 73 105 72 103)(59 74 106 65 104)(60 75 107 66 97)(61 76 108 67 98)(62 77 109 68 99)(63 78 110 69 100)(64 79 111 70 101)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)
(1 8)(2 7)(3 6)(4 5)(9 14)(10 13)(11 12)(15 16)(17 22)(18 21)(19 20)(23 24)(25 30)(26 29)(27 28)(31 32)(33 38)(34 37)(35 36)(39 40)(41 48)(42 47)(43 46)(44 45)(49 50)(51 56)(52 55)(53 54)(57 62)(58 61)(59 60)(63 64)(65 66)(67 72)(68 71)(69 70)(73 76)(74 75)(77 80)(78 79)(81 88)(82 87)(83 86)(84 85)(89 90)(91 96)(92 95)(93 94)(97 104)(98 103)(99 102)(100 101)(105 108)(106 107)(109 112)(110 111)(113 116)(114 115)(117 120)(118 119)(121 124)(122 123)(125 128)(126 127)(129 132)(130 131)(133 136)(134 135)(137 140)(138 139)(141 144)(142 143)(145 148)(146 147)(149 152)(150 151)(153 156)(154 155)(157 160)(158 159)
(1 119 41 111)(2 116 42 108)(3 113 43 105)(4 118 44 110)(5 115 45 107)(6 120 46 112)(7 117 47 109)(8 114 48 106)(9 82 76 152)(10 87 77 149)(11 84 78 146)(12 81 79 151)(13 86 80 148)(14 83 73 145)(15 88 74 150)(16 85 75 147)(17 55 98 160)(18 52 99 157)(19 49 100 154)(20 54 101 159)(21 51 102 156)(22 56 103 153)(23 53 104 158)(24 50 97 155)(25 57 33 136)(26 62 34 133)(27 59 35 130)(28 64 36 135)(29 61 37 132)(30 58 38 129)(31 63 39 134)(32 60 40 131)(65 126 138 93)(66 123 139 90)(67 128 140 95)(68 125 141 92)(69 122 142 89)(70 127 143 94)(71 124 144 91)(72 121 137 96)

G:=sub<Sym(160)| (1,127,159,36,151)(2,128,160,37,152)(3,121,153,38,145)(4,122,154,39,146)(5,123,155,40,147)(6,124,156,33,148)(7,125,157,34,149)(8,126,158,35,150)(9,116,140,17,132)(10,117,141,18,133)(11,118,142,19,134)(12,119,143,20,135)(13,120,144,21,136)(14,113,137,22,129)(15,114,138,23,130)(16,115,139,24,131)(25,86,46,91,51)(26,87,47,92,52)(27,88,48,93,53)(28,81,41,94,54)(29,82,42,95,55)(30,83,43,96,56)(31,84,44,89,49)(32,85,45,90,50)(57,80,112,71,102)(58,73,105,72,103)(59,74,106,65,104)(60,75,107,66,97)(61,76,108,67,98)(62,77,109,68,99)(63,78,110,69,100)(64,79,111,70,101), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,16)(17,22)(18,21)(19,20)(23,24)(25,30)(26,29)(27,28)(31,32)(33,38)(34,37)(35,36)(39,40)(41,48)(42,47)(43,46)(44,45)(49,50)(51,56)(52,55)(53,54)(57,62)(58,61)(59,60)(63,64)(65,66)(67,72)(68,71)(69,70)(73,76)(74,75)(77,80)(78,79)(81,88)(82,87)(83,86)(84,85)(89,90)(91,96)(92,95)(93,94)(97,104)(98,103)(99,102)(100,101)(105,108)(106,107)(109,112)(110,111)(113,116)(114,115)(117,120)(118,119)(121,124)(122,123)(125,128)(126,127)(129,132)(130,131)(133,136)(134,135)(137,140)(138,139)(141,144)(142,143)(145,148)(146,147)(149,152)(150,151)(153,156)(154,155)(157,160)(158,159), (1,119,41,111)(2,116,42,108)(3,113,43,105)(4,118,44,110)(5,115,45,107)(6,120,46,112)(7,117,47,109)(8,114,48,106)(9,82,76,152)(10,87,77,149)(11,84,78,146)(12,81,79,151)(13,86,80,148)(14,83,73,145)(15,88,74,150)(16,85,75,147)(17,55,98,160)(18,52,99,157)(19,49,100,154)(20,54,101,159)(21,51,102,156)(22,56,103,153)(23,53,104,158)(24,50,97,155)(25,57,33,136)(26,62,34,133)(27,59,35,130)(28,64,36,135)(29,61,37,132)(30,58,38,129)(31,63,39,134)(32,60,40,131)(65,126,138,93)(66,123,139,90)(67,128,140,95)(68,125,141,92)(69,122,142,89)(70,127,143,94)(71,124,144,91)(72,121,137,96)>;

G:=Group( (1,127,159,36,151)(2,128,160,37,152)(3,121,153,38,145)(4,122,154,39,146)(5,123,155,40,147)(6,124,156,33,148)(7,125,157,34,149)(8,126,158,35,150)(9,116,140,17,132)(10,117,141,18,133)(11,118,142,19,134)(12,119,143,20,135)(13,120,144,21,136)(14,113,137,22,129)(15,114,138,23,130)(16,115,139,24,131)(25,86,46,91,51)(26,87,47,92,52)(27,88,48,93,53)(28,81,41,94,54)(29,82,42,95,55)(30,83,43,96,56)(31,84,44,89,49)(32,85,45,90,50)(57,80,112,71,102)(58,73,105,72,103)(59,74,106,65,104)(60,75,107,66,97)(61,76,108,67,98)(62,77,109,68,99)(63,78,110,69,100)(64,79,111,70,101), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,16)(17,22)(18,21)(19,20)(23,24)(25,30)(26,29)(27,28)(31,32)(33,38)(34,37)(35,36)(39,40)(41,48)(42,47)(43,46)(44,45)(49,50)(51,56)(52,55)(53,54)(57,62)(58,61)(59,60)(63,64)(65,66)(67,72)(68,71)(69,70)(73,76)(74,75)(77,80)(78,79)(81,88)(82,87)(83,86)(84,85)(89,90)(91,96)(92,95)(93,94)(97,104)(98,103)(99,102)(100,101)(105,108)(106,107)(109,112)(110,111)(113,116)(114,115)(117,120)(118,119)(121,124)(122,123)(125,128)(126,127)(129,132)(130,131)(133,136)(134,135)(137,140)(138,139)(141,144)(142,143)(145,148)(146,147)(149,152)(150,151)(153,156)(154,155)(157,160)(158,159), (1,119,41,111)(2,116,42,108)(3,113,43,105)(4,118,44,110)(5,115,45,107)(6,120,46,112)(7,117,47,109)(8,114,48,106)(9,82,76,152)(10,87,77,149)(11,84,78,146)(12,81,79,151)(13,86,80,148)(14,83,73,145)(15,88,74,150)(16,85,75,147)(17,55,98,160)(18,52,99,157)(19,49,100,154)(20,54,101,159)(21,51,102,156)(22,56,103,153)(23,53,104,158)(24,50,97,155)(25,57,33,136)(26,62,34,133)(27,59,35,130)(28,64,36,135)(29,61,37,132)(30,58,38,129)(31,63,39,134)(32,60,40,131)(65,126,138,93)(66,123,139,90)(67,128,140,95)(68,125,141,92)(69,122,142,89)(70,127,143,94)(71,124,144,91)(72,121,137,96) );

G=PermutationGroup([[(1,127,159,36,151),(2,128,160,37,152),(3,121,153,38,145),(4,122,154,39,146),(5,123,155,40,147),(6,124,156,33,148),(7,125,157,34,149),(8,126,158,35,150),(9,116,140,17,132),(10,117,141,18,133),(11,118,142,19,134),(12,119,143,20,135),(13,120,144,21,136),(14,113,137,22,129),(15,114,138,23,130),(16,115,139,24,131),(25,86,46,91,51),(26,87,47,92,52),(27,88,48,93,53),(28,81,41,94,54),(29,82,42,95,55),(30,83,43,96,56),(31,84,44,89,49),(32,85,45,90,50),(57,80,112,71,102),(58,73,105,72,103),(59,74,106,65,104),(60,75,107,66,97),(61,76,108,67,98),(62,77,109,68,99),(63,78,110,69,100),(64,79,111,70,101)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)], [(1,8),(2,7),(3,6),(4,5),(9,14),(10,13),(11,12),(15,16),(17,22),(18,21),(19,20),(23,24),(25,30),(26,29),(27,28),(31,32),(33,38),(34,37),(35,36),(39,40),(41,48),(42,47),(43,46),(44,45),(49,50),(51,56),(52,55),(53,54),(57,62),(58,61),(59,60),(63,64),(65,66),(67,72),(68,71),(69,70),(73,76),(74,75),(77,80),(78,79),(81,88),(82,87),(83,86),(84,85),(89,90),(91,96),(92,95),(93,94),(97,104),(98,103),(99,102),(100,101),(105,108),(106,107),(109,112),(110,111),(113,116),(114,115),(117,120),(118,119),(121,124),(122,123),(125,128),(126,127),(129,132),(130,131),(133,136),(134,135),(137,140),(138,139),(141,144),(142,143),(145,148),(146,147),(149,152),(150,151),(153,156),(154,155),(157,160),(158,159)], [(1,119,41,111),(2,116,42,108),(3,113,43,105),(4,118,44,110),(5,115,45,107),(6,120,46,112),(7,117,47,109),(8,114,48,106),(9,82,76,152),(10,87,77,149),(11,84,78,146),(12,81,79,151),(13,86,80,148),(14,83,73,145),(15,88,74,150),(16,85,75,147),(17,55,98,160),(18,52,99,157),(19,49,100,154),(20,54,101,159),(21,51,102,156),(22,56,103,153),(23,53,104,158),(24,50,97,155),(25,57,33,136),(26,62,34,133),(27,59,35,130),(28,64,36,135),(29,61,37,132),(30,58,38,129),(31,63,39,134),(32,60,40,131),(65,126,138,93),(66,123,139,90),(67,128,140,95),(68,125,141,92),(69,122,142,89),(70,127,143,94),(71,124,144,91),(72,121,137,96)]])

110 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F4G4H4I4J5A5B5C5D8A8B8C8D10A···10L10M···10AB20A···20X20Y···20AN40A···40P
order122222224···444445555888810···1010···1020···2020···2040···40
size111144442···24444111144441···14···42···24···44···4

110 irreducible representations

dim11111111111111222244
type++++++++
imageC1C2C2C2C2C2C4C5C10C10C10C10C10C20D4C4○D4C5×D4C5×C4○D4C8⋊C22C5×C8⋊C22
kernelC5×D8⋊C4C5×C8⋊C4C5×D4⋊C4C5×C4.Q8D4×C20C10×D8C5×D8D8⋊C4C8⋊C4D4⋊C4C4.Q8C4×D4C2×D8D8C2×C20C20C2×C4C4C10C2
# reps112121844848432228828

Matrix representation of C5×D8⋊C4 in GL6(𝔽41)

100000
010000
0037000
0003700
0000370
0000037
,
0320000
3200000
003512031
0021293110
003614026
0037402918
,
0320000
900000
003512031
0020121031
003614026
007401235
,
900000
090000
000010
00268139
001000
002111733

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,37,0,0,0,0,0,0,37,0,0,0,0,0,0,37,0,0,0,0,0,0,37],[0,32,0,0,0,0,32,0,0,0,0,0,0,0,35,21,36,37,0,0,12,29,14,40,0,0,0,31,0,29,0,0,31,10,26,18],[0,9,0,0,0,0,32,0,0,0,0,0,0,0,35,20,36,7,0,0,12,12,14,40,0,0,0,10,0,12,0,0,31,31,26,35],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,0,26,1,2,0,0,0,8,0,11,0,0,1,1,0,17,0,0,0,39,0,33] >;

C5×D8⋊C4 in GAP, Magma, Sage, TeX

C_5\times D_8\rtimes C_4
% in TeX

G:=Group("C5xD8:C4");
// GroupNames label

G:=SmallGroup(320,943);
// by ID

G=gap.SmallGroup(320,943);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,560,589,3446,1276,7004,3511,172]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^8=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,d*b*d^-1=b^5,d*c*d^-1=b^4*c>;
// generators/relations

׿
×
𝔽