direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C5×Q8⋊D4, Q8⋊2(C5×D4), (C5×Q8)⋊20D4, C22⋊C8⋊8C10, C4.22(D4×C10), Q8⋊C4⋊9C10, (C2×SD16)⋊7C10, (C2×C10)⋊13SD16, (C2×C20).318D4, C20.383(C2×D4), C4⋊D4.2C10, (C22×Q8)⋊2C10, C2.5(C10×SD16), C22⋊3(C5×SD16), C23.42(C5×D4), C10.95C22≀C2, (C10×SD16)⋊24C2, C10.85(C2×SD16), C22.78(D4×C10), (C2×C20).913C23, (C2×C40).297C22, (C22×C10).164D4, (D4×C10).180C22, (Q8×C10).258C22, C10.131(C8.C22), (C22×C20).420C22, (Q8×C2×C10)⋊14C2, C4⋊C4.1(C2×C10), (C2×C4).27(C5×D4), (C5×C22⋊C8)⋊25C2, (C2×C8).34(C2×C10), C2.9(C5×C22≀C2), (C2×D4).5(C2×C10), C2.6(C5×C8.C22), (C5×Q8⋊C4)⋊31C2, (C2×C10).634(C2×D4), (C5×C4⋊D4).12C2, (C2×Q8).43(C2×C10), (C5×C4⋊C4).223C22, (C22×C4).38(C2×C10), (C2×C4).88(C22×C10), SmallGroup(320,949)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×Q8⋊D4
G = < a,b,c,d,e | a5=b4=d4=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=dbd-1=ebe=b-1, dcd-1=ece=b-1c, ede=d-1 >
Subgroups: 290 in 158 conjugacy classes, 62 normal (30 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, C23, C10, C10, C22⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C20, C20, C2×C10, C2×C10, C2×C10, C22⋊C8, Q8⋊C4, C4⋊D4, C2×SD16, C22×Q8, C40, C2×C20, C2×C20, C5×D4, C5×Q8, C5×Q8, C22×C10, C22×C10, Q8⋊D4, C5×C22⋊C4, C5×C4⋊C4, C2×C40, C5×SD16, C22×C20, C22×C20, D4×C10, D4×C10, Q8×C10, Q8×C10, C5×C22⋊C8, C5×Q8⋊C4, C5×C4⋊D4, C10×SD16, Q8×C2×C10, C5×Q8⋊D4
Quotients: C1, C2, C22, C5, D4, C23, C10, SD16, C2×D4, C2×C10, C22≀C2, C2×SD16, C8.C22, C5×D4, C22×C10, Q8⋊D4, C5×SD16, D4×C10, C5×C22≀C2, C10×SD16, C5×C8.C22, C5×Q8⋊D4
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 47 12 28)(2 48 13 29)(3 49 14 30)(4 50 15 26)(5 46 11 27)(6 152 144 31)(7 153 145 32)(8 154 141 33)(9 155 142 34)(10 151 143 35)(16 25 137 158)(17 21 138 159)(18 22 139 160)(19 23 140 156)(20 24 136 157)(36 44 70 53)(37 45 66 54)(38 41 67 55)(39 42 68 51)(40 43 69 52)(56 106 94 77)(57 107 95 78)(58 108 91 79)(59 109 92 80)(60 110 93 76)(61 74 82 88)(62 75 83 89)(63 71 84 90)(64 72 85 86)(65 73 81 87)(96 117 134 146)(97 118 135 147)(98 119 131 148)(99 120 132 149)(100 116 133 150)(101 128 122 114)(102 129 123 115)(103 130 124 111)(104 126 125 112)(105 127 121 113)
(1 157 12 24)(2 158 13 25)(3 159 14 21)(4 160 15 22)(5 156 11 23)(6 70 144 36)(7 66 145 37)(8 67 141 38)(9 68 142 39)(10 69 143 40)(16 48 137 29)(17 49 138 30)(18 50 139 26)(19 46 140 27)(20 47 136 28)(31 53 152 44)(32 54 153 45)(33 55 154 41)(34 51 155 42)(35 52 151 43)(56 127 94 113)(57 128 95 114)(58 129 91 115)(59 130 92 111)(60 126 93 112)(61 147 82 118)(62 148 83 119)(63 149 84 120)(64 150 85 116)(65 146 81 117)(71 132 90 99)(72 133 86 100)(73 134 87 96)(74 135 88 97)(75 131 89 98)(76 125 110 104)(77 121 106 105)(78 122 107 101)(79 123 108 102)(80 124 109 103)
(1 81 66 106)(2 82 67 107)(3 83 68 108)(4 84 69 109)(5 85 70 110)(6 112 23 100)(7 113 24 96)(8 114 25 97)(9 115 21 98)(10 111 22 99)(11 64 36 76)(12 65 37 77)(13 61 38 78)(14 62 39 79)(15 63 40 80)(16 118 33 101)(17 119 34 102)(18 120 35 103)(19 116 31 104)(20 117 32 105)(26 90 43 92)(27 86 44 93)(28 87 45 94)(29 88 41 95)(30 89 42 91)(46 72 53 60)(47 73 54 56)(48 74 55 57)(49 75 51 58)(50 71 52 59)(121 136 146 153)(122 137 147 154)(123 138 148 155)(124 139 149 151)(125 140 150 152)(126 156 133 144)(127 157 134 145)(128 158 135 141)(129 159 131 142)(130 160 132 143)
(6 152)(7 153)(8 154)(9 155)(10 151)(16 158)(17 159)(18 160)(19 156)(20 157)(21 138)(22 139)(23 140)(24 136)(25 137)(26 50)(27 46)(28 47)(29 48)(30 49)(31 144)(32 145)(33 141)(34 142)(35 143)(41 55)(42 51)(43 52)(44 53)(45 54)(56 87)(57 88)(58 89)(59 90)(60 86)(61 78)(62 79)(63 80)(64 76)(65 77)(71 92)(72 93)(73 94)(74 95)(75 91)(81 106)(82 107)(83 108)(84 109)(85 110)(96 121)(97 122)(98 123)(99 124)(100 125)(101 135)(102 131)(103 132)(104 133)(105 134)(111 149)(112 150)(113 146)(114 147)(115 148)(116 126)(117 127)(118 128)(119 129)(120 130)
G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,47,12,28)(2,48,13,29)(3,49,14,30)(4,50,15,26)(5,46,11,27)(6,152,144,31)(7,153,145,32)(8,154,141,33)(9,155,142,34)(10,151,143,35)(16,25,137,158)(17,21,138,159)(18,22,139,160)(19,23,140,156)(20,24,136,157)(36,44,70,53)(37,45,66,54)(38,41,67,55)(39,42,68,51)(40,43,69,52)(56,106,94,77)(57,107,95,78)(58,108,91,79)(59,109,92,80)(60,110,93,76)(61,74,82,88)(62,75,83,89)(63,71,84,90)(64,72,85,86)(65,73,81,87)(96,117,134,146)(97,118,135,147)(98,119,131,148)(99,120,132,149)(100,116,133,150)(101,128,122,114)(102,129,123,115)(103,130,124,111)(104,126,125,112)(105,127,121,113), (1,157,12,24)(2,158,13,25)(3,159,14,21)(4,160,15,22)(5,156,11,23)(6,70,144,36)(7,66,145,37)(8,67,141,38)(9,68,142,39)(10,69,143,40)(16,48,137,29)(17,49,138,30)(18,50,139,26)(19,46,140,27)(20,47,136,28)(31,53,152,44)(32,54,153,45)(33,55,154,41)(34,51,155,42)(35,52,151,43)(56,127,94,113)(57,128,95,114)(58,129,91,115)(59,130,92,111)(60,126,93,112)(61,147,82,118)(62,148,83,119)(63,149,84,120)(64,150,85,116)(65,146,81,117)(71,132,90,99)(72,133,86,100)(73,134,87,96)(74,135,88,97)(75,131,89,98)(76,125,110,104)(77,121,106,105)(78,122,107,101)(79,123,108,102)(80,124,109,103), (1,81,66,106)(2,82,67,107)(3,83,68,108)(4,84,69,109)(5,85,70,110)(6,112,23,100)(7,113,24,96)(8,114,25,97)(9,115,21,98)(10,111,22,99)(11,64,36,76)(12,65,37,77)(13,61,38,78)(14,62,39,79)(15,63,40,80)(16,118,33,101)(17,119,34,102)(18,120,35,103)(19,116,31,104)(20,117,32,105)(26,90,43,92)(27,86,44,93)(28,87,45,94)(29,88,41,95)(30,89,42,91)(46,72,53,60)(47,73,54,56)(48,74,55,57)(49,75,51,58)(50,71,52,59)(121,136,146,153)(122,137,147,154)(123,138,148,155)(124,139,149,151)(125,140,150,152)(126,156,133,144)(127,157,134,145)(128,158,135,141)(129,159,131,142)(130,160,132,143), (6,152)(7,153)(8,154)(9,155)(10,151)(16,158)(17,159)(18,160)(19,156)(20,157)(21,138)(22,139)(23,140)(24,136)(25,137)(26,50)(27,46)(28,47)(29,48)(30,49)(31,144)(32,145)(33,141)(34,142)(35,143)(41,55)(42,51)(43,52)(44,53)(45,54)(56,87)(57,88)(58,89)(59,90)(60,86)(61,78)(62,79)(63,80)(64,76)(65,77)(71,92)(72,93)(73,94)(74,95)(75,91)(81,106)(82,107)(83,108)(84,109)(85,110)(96,121)(97,122)(98,123)(99,124)(100,125)(101,135)(102,131)(103,132)(104,133)(105,134)(111,149)(112,150)(113,146)(114,147)(115,148)(116,126)(117,127)(118,128)(119,129)(120,130)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,47,12,28)(2,48,13,29)(3,49,14,30)(4,50,15,26)(5,46,11,27)(6,152,144,31)(7,153,145,32)(8,154,141,33)(9,155,142,34)(10,151,143,35)(16,25,137,158)(17,21,138,159)(18,22,139,160)(19,23,140,156)(20,24,136,157)(36,44,70,53)(37,45,66,54)(38,41,67,55)(39,42,68,51)(40,43,69,52)(56,106,94,77)(57,107,95,78)(58,108,91,79)(59,109,92,80)(60,110,93,76)(61,74,82,88)(62,75,83,89)(63,71,84,90)(64,72,85,86)(65,73,81,87)(96,117,134,146)(97,118,135,147)(98,119,131,148)(99,120,132,149)(100,116,133,150)(101,128,122,114)(102,129,123,115)(103,130,124,111)(104,126,125,112)(105,127,121,113), (1,157,12,24)(2,158,13,25)(3,159,14,21)(4,160,15,22)(5,156,11,23)(6,70,144,36)(7,66,145,37)(8,67,141,38)(9,68,142,39)(10,69,143,40)(16,48,137,29)(17,49,138,30)(18,50,139,26)(19,46,140,27)(20,47,136,28)(31,53,152,44)(32,54,153,45)(33,55,154,41)(34,51,155,42)(35,52,151,43)(56,127,94,113)(57,128,95,114)(58,129,91,115)(59,130,92,111)(60,126,93,112)(61,147,82,118)(62,148,83,119)(63,149,84,120)(64,150,85,116)(65,146,81,117)(71,132,90,99)(72,133,86,100)(73,134,87,96)(74,135,88,97)(75,131,89,98)(76,125,110,104)(77,121,106,105)(78,122,107,101)(79,123,108,102)(80,124,109,103), (1,81,66,106)(2,82,67,107)(3,83,68,108)(4,84,69,109)(5,85,70,110)(6,112,23,100)(7,113,24,96)(8,114,25,97)(9,115,21,98)(10,111,22,99)(11,64,36,76)(12,65,37,77)(13,61,38,78)(14,62,39,79)(15,63,40,80)(16,118,33,101)(17,119,34,102)(18,120,35,103)(19,116,31,104)(20,117,32,105)(26,90,43,92)(27,86,44,93)(28,87,45,94)(29,88,41,95)(30,89,42,91)(46,72,53,60)(47,73,54,56)(48,74,55,57)(49,75,51,58)(50,71,52,59)(121,136,146,153)(122,137,147,154)(123,138,148,155)(124,139,149,151)(125,140,150,152)(126,156,133,144)(127,157,134,145)(128,158,135,141)(129,159,131,142)(130,160,132,143), (6,152)(7,153)(8,154)(9,155)(10,151)(16,158)(17,159)(18,160)(19,156)(20,157)(21,138)(22,139)(23,140)(24,136)(25,137)(26,50)(27,46)(28,47)(29,48)(30,49)(31,144)(32,145)(33,141)(34,142)(35,143)(41,55)(42,51)(43,52)(44,53)(45,54)(56,87)(57,88)(58,89)(59,90)(60,86)(61,78)(62,79)(63,80)(64,76)(65,77)(71,92)(72,93)(73,94)(74,95)(75,91)(81,106)(82,107)(83,108)(84,109)(85,110)(96,121)(97,122)(98,123)(99,124)(100,125)(101,135)(102,131)(103,132)(104,133)(105,134)(111,149)(112,150)(113,146)(114,147)(115,148)(116,126)(117,127)(118,128)(119,129)(120,130) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,47,12,28),(2,48,13,29),(3,49,14,30),(4,50,15,26),(5,46,11,27),(6,152,144,31),(7,153,145,32),(8,154,141,33),(9,155,142,34),(10,151,143,35),(16,25,137,158),(17,21,138,159),(18,22,139,160),(19,23,140,156),(20,24,136,157),(36,44,70,53),(37,45,66,54),(38,41,67,55),(39,42,68,51),(40,43,69,52),(56,106,94,77),(57,107,95,78),(58,108,91,79),(59,109,92,80),(60,110,93,76),(61,74,82,88),(62,75,83,89),(63,71,84,90),(64,72,85,86),(65,73,81,87),(96,117,134,146),(97,118,135,147),(98,119,131,148),(99,120,132,149),(100,116,133,150),(101,128,122,114),(102,129,123,115),(103,130,124,111),(104,126,125,112),(105,127,121,113)], [(1,157,12,24),(2,158,13,25),(3,159,14,21),(4,160,15,22),(5,156,11,23),(6,70,144,36),(7,66,145,37),(8,67,141,38),(9,68,142,39),(10,69,143,40),(16,48,137,29),(17,49,138,30),(18,50,139,26),(19,46,140,27),(20,47,136,28),(31,53,152,44),(32,54,153,45),(33,55,154,41),(34,51,155,42),(35,52,151,43),(56,127,94,113),(57,128,95,114),(58,129,91,115),(59,130,92,111),(60,126,93,112),(61,147,82,118),(62,148,83,119),(63,149,84,120),(64,150,85,116),(65,146,81,117),(71,132,90,99),(72,133,86,100),(73,134,87,96),(74,135,88,97),(75,131,89,98),(76,125,110,104),(77,121,106,105),(78,122,107,101),(79,123,108,102),(80,124,109,103)], [(1,81,66,106),(2,82,67,107),(3,83,68,108),(4,84,69,109),(5,85,70,110),(6,112,23,100),(7,113,24,96),(8,114,25,97),(9,115,21,98),(10,111,22,99),(11,64,36,76),(12,65,37,77),(13,61,38,78),(14,62,39,79),(15,63,40,80),(16,118,33,101),(17,119,34,102),(18,120,35,103),(19,116,31,104),(20,117,32,105),(26,90,43,92),(27,86,44,93),(28,87,45,94),(29,88,41,95),(30,89,42,91),(46,72,53,60),(47,73,54,56),(48,74,55,57),(49,75,51,58),(50,71,52,59),(121,136,146,153),(122,137,147,154),(123,138,148,155),(124,139,149,151),(125,140,150,152),(126,156,133,144),(127,157,134,145),(128,158,135,141),(129,159,131,142),(130,160,132,143)], [(6,152),(7,153),(8,154),(9,155),(10,151),(16,158),(17,159),(18,160),(19,156),(20,157),(21,138),(22,139),(23,140),(24,136),(25,137),(26,50),(27,46),(28,47),(29,48),(30,49),(31,144),(32,145),(33,141),(34,142),(35,143),(41,55),(42,51),(43,52),(44,53),(45,54),(56,87),(57,88),(58,89),(59,90),(60,86),(61,78),(62,79),(63,80),(64,76),(65,77),(71,92),(72,93),(73,94),(74,95),(75,91),(81,106),(82,107),(83,108),(84,109),(85,110),(96,121),(97,122),(98,123),(99,124),(100,125),(101,135),(102,131),(103,132),(104,133),(105,134),(111,149),(112,150),(113,146),(114,147),(115,148),(116,126),(117,127),(118,128),(119,129),(120,130)]])
95 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | ··· | 4G | 4H | 5A | 5B | 5C | 5D | 8A | 8B | 8C | 8D | 10A | ··· | 10L | 10M | ··· | 10T | 10U | 10V | 10W | 10X | 20A | ··· | 20H | 20I | ··· | 20AB | 20AC | 20AD | 20AE | 20AF | 40A | ··· | 40P |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | ··· | 4 | 4 | 5 | 5 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | ··· | 20 | 20 | 20 | 20 | 20 | 40 | ··· | 40 |
| size | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 2 | 2 | 4 | ··· | 4 | 8 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 | 1 | ··· | 1 | 2 | ··· | 2 | 8 | 8 | 8 | 8 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 4 | ··· | 4 |
95 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | - | ||||||||||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | C10 | C10 | D4 | D4 | D4 | SD16 | C5×D4 | C5×D4 | C5×D4 | C5×SD16 | C8.C22 | C5×C8.C22 |
| kernel | C5×Q8⋊D4 | C5×C22⋊C8 | C5×Q8⋊C4 | C5×C4⋊D4 | C10×SD16 | Q8×C2×C10 | Q8⋊D4 | C22⋊C8 | Q8⋊C4 | C4⋊D4 | C2×SD16 | C22×Q8 | C2×C20 | C5×Q8 | C22×C10 | C2×C10 | C2×C4 | Q8 | C23 | C22 | C10 | C2 |
| # reps | 1 | 1 | 2 | 1 | 2 | 1 | 4 | 4 | 8 | 4 | 8 | 4 | 1 | 4 | 1 | 4 | 4 | 16 | 4 | 16 | 1 | 4 |
Matrix representation of C5×Q8⋊D4 ►in GL4(𝔽41) generated by
| 1 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 18 | 0 |
| 0 | 0 | 0 | 18 |
| 0 | 1 | 0 | 0 |
| 40 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
| 26 | 26 | 0 | 0 |
| 26 | 15 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |
| 40 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 40 | 0 |
| 1 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 |
| 0 | 0 | 40 | 0 |
| 0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,18,0,0,0,0,18],[0,40,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[26,26,0,0,26,15,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,1,0,0,0,0,0,40,0,0,1,0],[1,0,0,0,0,40,0,0,0,0,40,0,0,0,0,1] >;
C5×Q8⋊D4 in GAP, Magma, Sage, TeX
C_5\times Q_8\rtimes D_4
% in TeX
G:=Group("C5xQ8:D4"); // GroupNames label
G:=SmallGroup(320,949);
// by ID
G=gap.SmallGroup(320,949);
# by ID
G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,589,1128,1766,7004,3511,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^4=d^4=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=d*b*d^-1=e*b*e=b^-1,d*c*d^-1=e*c*e=b^-1*c,e*d*e=d^-1>;
// generators/relations