Extensions 1→N→G→Q→1 with N=C5xQ8 and Q=D4

Direct product G=NxQ with N=C5xQ8 and Q=D4
dρLabelID
C5xD4xQ8160C5xD4xQ8320,1551

Semidirect products G=N:Q with N=C5xQ8 and Q=D4
extensionφ:Q→Out NdρLabelID
(C5xQ8):1D4 = Q8:2D20φ: D4/C2C22 ⊆ Out C5xQ8160(C5xQ8):1D4320,433
(C5xQ8):2D4 = D20:4D4φ: D4/C2C22 ⊆ Out C5xQ8160(C5xQ8):2D4320,438
(C5xQ8):3D4 = D4:4D20φ: D4/C2C22 ⊆ Out C5xQ8404+(C5xQ8):3D4320,449
(C5xQ8):4D4 = Dic5:5SD16φ: D4/C2C22 ⊆ Out C5xQ8160(C5xQ8):4D4320,790
(C5xQ8):5D4 = D10:8SD16φ: D4/C2C22 ⊆ Out C5xQ8160(C5xQ8):5D4320,797
(C5xQ8):6D4 = D20:7D4φ: D4/C2C22 ⊆ Out C5xQ8160(C5xQ8):6D4320,799
(C5xQ8):7D4 = D20:18D4φ: D4/C2C22 ⊆ Out C5xQ8408+(C5xQ8):7D4320,825
(C5xQ8):8D4 = Q8:D20φ: D4/C4C2 ⊆ Out C5xQ8160(C5xQ8):8D4320,654
(C5xQ8):9D4 = Q8xD20φ: D4/C4C2 ⊆ Out C5xQ8160(C5xQ8):9D4320,1247
(C5xQ8):10D4 = Q8:5D20φ: D4/C4C2 ⊆ Out C5xQ8160(C5xQ8):10D4320,1248
(C5xQ8):11D4 = Q8:6D20φ: D4/C4C2 ⊆ Out C5xQ8160(C5xQ8):11D4320,1249
(C5xQ8):12D4 = C5xC4:SD16φ: D4/C4C2 ⊆ Out C5xQ8160(C5xQ8):12D4320,961
(C5xQ8):13D4 = (C5xQ8):13D4φ: D4/C22C2 ⊆ Out C5xQ8160(C5xQ8):13D4320,854
(C5xQ8):14D4 = (C5xD4):14D4φ: D4/C22C2 ⊆ Out C5xQ8160(C5xQ8):14D4320,865
(C5xQ8):15D4 = 2+ 1+4:D5φ: D4/C22C2 ⊆ Out C5xQ8408+(C5xQ8):15D4320,868
(C5xQ8):16D4 = Q8xC5:D4φ: D4/C22C2 ⊆ Out C5xQ8160(C5xQ8):16D4320,1487
(C5xQ8):17D4 = C10.452- 1+4φ: D4/C22C2 ⊆ Out C5xQ8160(C5xQ8):17D4320,1489
(C5xQ8):18D4 = C10.1072- 1+4φ: D4/C22C2 ⊆ Out C5xQ8160(C5xQ8):18D4320,1503
(C5xQ8):19D4 = C10.1482+ 1+4φ: D4/C22C2 ⊆ Out C5xQ8160(C5xQ8):19D4320,1506
(C5xQ8):20D4 = C5xQ8:D4φ: D4/C22C2 ⊆ Out C5xQ8160(C5xQ8):20D4320,949
(C5xQ8):21D4 = C5xD4:D4φ: D4/C22C2 ⊆ Out C5xQ8160(C5xQ8):21D4320,950
(C5xQ8):22D4 = C5xD4:4D4φ: D4/C22C2 ⊆ Out C5xQ8404(C5xQ8):22D4320,954
(C5xQ8):23D4 = C5xQ8:5D4φ: trivial image160(C5xQ8):23D4320,1550
(C5xQ8):24D4 = C5xQ8:6D4φ: trivial image160(C5xQ8):24D4320,1552

Non-split extensions G=N.Q with N=C5xQ8 and Q=D4
extensionφ:Q→Out NdρLabelID
(C5xQ8).1D4 = D10:4Q16φ: D4/C2C22 ⊆ Out C5xQ8160(C5xQ8).1D4320,435
(C5xQ8).2D4 = Q8.D20φ: D4/C2C22 ⊆ Out C5xQ8160(C5xQ8).2D4320,437
(C5xQ8).3D4 = M4(2):D10φ: D4/C2C22 ⊆ Out C5xQ8804(C5xQ8).3D4320,452
(C5xQ8).4D4 = D4.9D20φ: D4/C2C22 ⊆ Out C5xQ8804-(C5xQ8).4D4320,453
(C5xQ8).5D4 = D4.10D20φ: D4/C2C22 ⊆ Out C5xQ8804(C5xQ8).5D4320,454
(C5xQ8).6D4 = (C5xQ8).D4φ: D4/C2C22 ⊆ Out C5xQ8160(C5xQ8).6D4320,793
(C5xQ8).7D4 = Dic5:3Q16φ: D4/C2C22 ⊆ Out C5xQ8320(C5xQ8).7D4320,809
(C5xQ8).8D4 = (C2xQ16):D5φ: D4/C2C22 ⊆ Out C5xQ8160(C5xQ8).8D4320,812
(C5xQ8).9D4 = D10:5Q16φ: D4/C2C22 ⊆ Out C5xQ8160(C5xQ8).9D4320,813
(C5xQ8).10D4 = D20.17D4φ: D4/C2C22 ⊆ Out C5xQ8160(C5xQ8).10D4320,814
(C5xQ8).11D4 = M4(2).D10φ: D4/C2C22 ⊆ Out C5xQ8808+(C5xQ8).11D4320,826
(C5xQ8).12D4 = M4(2).13D10φ: D4/C2C22 ⊆ Out C5xQ8808-(C5xQ8).12D4320,827
(C5xQ8).13D4 = D20.38D4φ: D4/C2C22 ⊆ Out C5xQ8808-(C5xQ8).13D4320,828
(C5xQ8).14D4 = D20.39D4φ: D4/C2C22 ⊆ Out C5xQ8808+(C5xQ8).14D4320,829
(C5xQ8).15D4 = M4(2).15D10φ: D4/C2C22 ⊆ Out C5xQ8808+(C5xQ8).15D4320,830
(C5xQ8).16D4 = M4(2).16D10φ: D4/C2C22 ⊆ Out C5xQ81608-(C5xQ8).16D4320,831
(C5xQ8).17D4 = D20.40D4φ: D4/C2C22 ⊆ Out C5xQ8808-(C5xQ8).17D4320,832
(C5xQ8).18D4 = Q8.1D20φ: D4/C4C2 ⊆ Out C5xQ8160(C5xQ8).18D4320,655
(C5xQ8).19D4 = C20:7Q16φ: D4/C4C2 ⊆ Out C5xQ8320(C5xQ8).19D4320,658
(C5xQ8).20D4 = D4.3D20φ: D4/C4C2 ⊆ Out C5xQ8804(C5xQ8).20D4320,768
(C5xQ8).21D4 = D4.4D20φ: D4/C4C2 ⊆ Out C5xQ8804+(C5xQ8).21D4320,769
(C5xQ8).22D4 = D4.5D20φ: D4/C4C2 ⊆ Out C5xQ81604-(C5xQ8).22D4320,770
(C5xQ8).23D4 = D4.11D20φ: D4/C4C2 ⊆ Out C5xQ8804(C5xQ8).23D4320,1423
(C5xQ8).24D4 = D4.12D20φ: D4/C4C2 ⊆ Out C5xQ8804+(C5xQ8).24D4320,1424
(C5xQ8).25D4 = D4.13D20φ: D4/C4C2 ⊆ Out C5xQ81604-(C5xQ8).25D4320,1425
(C5xQ8).26D4 = C5xC4:2Q16φ: D4/C4C2 ⊆ Out C5xQ8320(C5xQ8).26D4320,963
(C5xQ8).27D4 = C5xQ8.D4φ: D4/C4C2 ⊆ Out C5xQ8160(C5xQ8).27D4320,965
(C5xQ8).28D4 = C5xD4.3D4φ: D4/C4C2 ⊆ Out C5xQ8804(C5xQ8).28D4320,972
(C5xQ8).29D4 = C5xD4.4D4φ: D4/C4C2 ⊆ Out C5xQ8804(C5xQ8).29D4320,973
(C5xQ8).30D4 = C5xD4.5D4φ: D4/C4C2 ⊆ Out C5xQ81604(C5xQ8).30D4320,974
(C5xQ8).31D4 = (C2xC10):8Q16φ: D4/C22C2 ⊆ Out C5xQ8160(C5xQ8).31D4320,855
(C5xQ8).32D4 = (C5xD4).32D4φ: D4/C22C2 ⊆ Out C5xQ8160(C5xQ8).32D4320,866
(C5xQ8).33D4 = 2+ 1+4.D5φ: D4/C22C2 ⊆ Out C5xQ8808-(C5xQ8).33D4320,869
(C5xQ8).34D4 = 2- 1+4:2D5φ: D4/C22C2 ⊆ Out C5xQ8808+(C5xQ8).34D4320,872
(C5xQ8).35D4 = 2- 1+4.2D5φ: D4/C22C2 ⊆ Out C5xQ8808-(C5xQ8).35D4320,873
(C5xQ8).36D4 = D20.32C23φ: D4/C22C2 ⊆ Out C5xQ8808+(C5xQ8).36D4320,1507
(C5xQ8).37D4 = D20.33C23φ: D4/C22C2 ⊆ Out C5xQ8808-(C5xQ8).37D4320,1508
(C5xQ8).38D4 = D20.34C23φ: D4/C22C2 ⊆ Out C5xQ8808+(C5xQ8).38D4320,1509
(C5xQ8).39D4 = D20.35C23φ: D4/C22C2 ⊆ Out C5xQ81608-(C5xQ8).39D4320,1510
(C5xQ8).40D4 = C5xC22:Q16φ: D4/C22C2 ⊆ Out C5xQ8160(C5xQ8).40D4320,952
(C5xQ8).41D4 = C5xD4.7D4φ: D4/C22C2 ⊆ Out C5xQ8160(C5xQ8).41D4320,953
(C5xQ8).42D4 = C5xD4.8D4φ: D4/C22C2 ⊆ Out C5xQ8804(C5xQ8).42D4320,955
(C5xQ8).43D4 = C5xD4.9D4φ: D4/C22C2 ⊆ Out C5xQ8804(C5xQ8).43D4320,956
(C5xQ8).44D4 = C5xD4.10D4φ: D4/C22C2 ⊆ Out C5xQ8804(C5xQ8).44D4320,957
(C5xQ8).45D4 = C5xD4oD8φ: trivial image804(C5xQ8).45D4320,1578
(C5xQ8).46D4 = C5xD4oSD16φ: trivial image804(C5xQ8).46D4320,1579
(C5xQ8).47D4 = C5xQ8oD8φ: trivial image1604(C5xQ8).47D4320,1580

׿
x
:
Z
F
o
wr
Q
<