Copied to
clipboard

G = C8⋊D20order 320 = 26·5

1st semidirect product of C8 and D20 acting via D20/C10=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C401D4, C81D20, C42.18D10, C8⋊C43D5, C51(C83D4), (C2×D40)⋊10C2, C204D42C2, (C2×C4).25D20, (C2×C8).55D10, C4.34(C2×D20), (C2×C20).36D4, C20.277(C2×D4), C4.D202C2, (C4×C20).3C22, C2.7(C8⋊D10), C2.9(C204D4), C10.7(C41D4), C10.4(C8⋊C22), (C2×C40).56C22, (C2×D20).8C22, C22.97(C2×D20), (C2×C20).733C23, (C2×Dic10).9C22, (C5×C8⋊C4)⋊4C2, (C2×C40⋊C2)⋊1C2, (C2×C10).116(C2×D4), (C2×C4).677(C22×D5), SmallGroup(320,339)

Series: Derived Chief Lower central Upper central

C1C2×C20 — C8⋊D20
C1C5C10C20C2×C20C2×D20C204D4 — C8⋊D20
C5C10C2×C20 — C8⋊D20
C1C22C42C8⋊C4

Generators and relations for C8⋊D20
 G = < a,b,c | a8=b20=c2=1, bab-1=a5, cac=a3, cbc=b-1 >

Subgroups: 878 in 144 conjugacy classes, 47 normal (17 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C42, C22⋊C4, C2×C8, D8, SD16, C2×D4, C2×Q8, Dic5, C20, C20, D10, C2×C10, C8⋊C4, C4.4D4, C41D4, C2×D8, C2×SD16, C40, Dic10, D20, C2×Dic5, C2×C20, C2×C20, C22×D5, C83D4, C40⋊C2, D40, D10⋊C4, C4×C20, C2×C40, C2×Dic10, C2×D20, C2×D20, C2×D20, C5×C8⋊C4, C204D4, C4.D20, C2×C40⋊C2, C2×D40, C8⋊D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, C41D4, C8⋊C22, D20, C22×D5, C83D4, C2×D20, C204D4, C8⋊D10, C8⋊D20

Smallest permutation representation of C8⋊D20
On 160 points
Generators in S160
(1 61 118 45 81 34 127 148)(2 35 119 149 82 62 128 46)(3 63 120 47 83 36 129 150)(4 37 101 151 84 64 130 48)(5 65 102 49 85 38 131 152)(6 39 103 153 86 66 132 50)(7 67 104 51 87 40 133 154)(8 21 105 155 88 68 134 52)(9 69 106 53 89 22 135 156)(10 23 107 157 90 70 136 54)(11 71 108 55 91 24 137 158)(12 25 109 159 92 72 138 56)(13 73 110 57 93 26 139 160)(14 27 111 141 94 74 140 58)(15 75 112 59 95 28 121 142)(16 29 113 143 96 76 122 60)(17 77 114 41 97 30 123 144)(18 31 115 145 98 78 124 42)(19 79 116 43 99 32 125 146)(20 33 117 147 100 80 126 44)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 147)(2 146)(3 145)(4 144)(5 143)(6 142)(7 141)(8 160)(9 159)(10 158)(11 157)(12 156)(13 155)(14 154)(15 153)(16 152)(17 151)(18 150)(19 149)(20 148)(21 110)(22 109)(23 108)(24 107)(25 106)(26 105)(27 104)(28 103)(29 102)(30 101)(31 120)(32 119)(33 118)(34 117)(35 116)(36 115)(37 114)(38 113)(39 112)(40 111)(41 84)(42 83)(43 82)(44 81)(45 100)(46 99)(47 98)(48 97)(49 96)(50 95)(51 94)(52 93)(53 92)(54 91)(55 90)(56 89)(57 88)(58 87)(59 86)(60 85)(61 126)(62 125)(63 124)(64 123)(65 122)(66 121)(67 140)(68 139)(69 138)(70 137)(71 136)(72 135)(73 134)(74 133)(75 132)(76 131)(77 130)(78 129)(79 128)(80 127)

G:=sub<Sym(160)| (1,61,118,45,81,34,127,148)(2,35,119,149,82,62,128,46)(3,63,120,47,83,36,129,150)(4,37,101,151,84,64,130,48)(5,65,102,49,85,38,131,152)(6,39,103,153,86,66,132,50)(7,67,104,51,87,40,133,154)(8,21,105,155,88,68,134,52)(9,69,106,53,89,22,135,156)(10,23,107,157,90,70,136,54)(11,71,108,55,91,24,137,158)(12,25,109,159,92,72,138,56)(13,73,110,57,93,26,139,160)(14,27,111,141,94,74,140,58)(15,75,112,59,95,28,121,142)(16,29,113,143,96,76,122,60)(17,77,114,41,97,30,123,144)(18,31,115,145,98,78,124,42)(19,79,116,43,99,32,125,146)(20,33,117,147,100,80,126,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,147)(2,146)(3,145)(4,144)(5,143)(6,142)(7,141)(8,160)(9,159)(10,158)(11,157)(12,156)(13,155)(14,154)(15,153)(16,152)(17,151)(18,150)(19,149)(20,148)(21,110)(22,109)(23,108)(24,107)(25,106)(26,105)(27,104)(28,103)(29,102)(30,101)(31,120)(32,119)(33,118)(34,117)(35,116)(36,115)(37,114)(38,113)(39,112)(40,111)(41,84)(42,83)(43,82)(44,81)(45,100)(46,99)(47,98)(48,97)(49,96)(50,95)(51,94)(52,93)(53,92)(54,91)(55,90)(56,89)(57,88)(58,87)(59,86)(60,85)(61,126)(62,125)(63,124)(64,123)(65,122)(66,121)(67,140)(68,139)(69,138)(70,137)(71,136)(72,135)(73,134)(74,133)(75,132)(76,131)(77,130)(78,129)(79,128)(80,127)>;

G:=Group( (1,61,118,45,81,34,127,148)(2,35,119,149,82,62,128,46)(3,63,120,47,83,36,129,150)(4,37,101,151,84,64,130,48)(5,65,102,49,85,38,131,152)(6,39,103,153,86,66,132,50)(7,67,104,51,87,40,133,154)(8,21,105,155,88,68,134,52)(9,69,106,53,89,22,135,156)(10,23,107,157,90,70,136,54)(11,71,108,55,91,24,137,158)(12,25,109,159,92,72,138,56)(13,73,110,57,93,26,139,160)(14,27,111,141,94,74,140,58)(15,75,112,59,95,28,121,142)(16,29,113,143,96,76,122,60)(17,77,114,41,97,30,123,144)(18,31,115,145,98,78,124,42)(19,79,116,43,99,32,125,146)(20,33,117,147,100,80,126,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,147)(2,146)(3,145)(4,144)(5,143)(6,142)(7,141)(8,160)(9,159)(10,158)(11,157)(12,156)(13,155)(14,154)(15,153)(16,152)(17,151)(18,150)(19,149)(20,148)(21,110)(22,109)(23,108)(24,107)(25,106)(26,105)(27,104)(28,103)(29,102)(30,101)(31,120)(32,119)(33,118)(34,117)(35,116)(36,115)(37,114)(38,113)(39,112)(40,111)(41,84)(42,83)(43,82)(44,81)(45,100)(46,99)(47,98)(48,97)(49,96)(50,95)(51,94)(52,93)(53,92)(54,91)(55,90)(56,89)(57,88)(58,87)(59,86)(60,85)(61,126)(62,125)(63,124)(64,123)(65,122)(66,121)(67,140)(68,139)(69,138)(70,137)(71,136)(72,135)(73,134)(74,133)(75,132)(76,131)(77,130)(78,129)(79,128)(80,127) );

G=PermutationGroup([[(1,61,118,45,81,34,127,148),(2,35,119,149,82,62,128,46),(3,63,120,47,83,36,129,150),(4,37,101,151,84,64,130,48),(5,65,102,49,85,38,131,152),(6,39,103,153,86,66,132,50),(7,67,104,51,87,40,133,154),(8,21,105,155,88,68,134,52),(9,69,106,53,89,22,135,156),(10,23,107,157,90,70,136,54),(11,71,108,55,91,24,137,158),(12,25,109,159,92,72,138,56),(13,73,110,57,93,26,139,160),(14,27,111,141,94,74,140,58),(15,75,112,59,95,28,121,142),(16,29,113,143,96,76,122,60),(17,77,114,41,97,30,123,144),(18,31,115,145,98,78,124,42),(19,79,116,43,99,32,125,146),(20,33,117,147,100,80,126,44)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,147),(2,146),(3,145),(4,144),(5,143),(6,142),(7,141),(8,160),(9,159),(10,158),(11,157),(12,156),(13,155),(14,154),(15,153),(16,152),(17,151),(18,150),(19,149),(20,148),(21,110),(22,109),(23,108),(24,107),(25,106),(26,105),(27,104),(28,103),(29,102),(30,101),(31,120),(32,119),(33,118),(34,117),(35,116),(36,115),(37,114),(38,113),(39,112),(40,111),(41,84),(42,83),(43,82),(44,81),(45,100),(46,99),(47,98),(48,97),(49,96),(50,95),(51,94),(52,93),(53,92),(54,91),(55,90),(56,89),(57,88),(58,87),(59,86),(60,85),(61,126),(62,125),(63,124),(64,123),(65,122),(66,121),(67,140),(68,139),(69,138),(70,137),(71,136),(72,135),(73,134),(74,133),(75,132),(76,131),(77,130),(78,129),(79,128),(80,127)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E5A5B8A8B8C8D10A···10F20A···20H20I···20P40A···40P
order12222224444455888810···1020···2020···2040···40
size11114040402244402244442···22···24···44···4

56 irreducible representations

dim111111222222244
type+++++++++++++++
imageC1C2C2C2C2C2D4D4D5D10D10D20D20C8⋊C22C8⋊D10
kernelC8⋊D20C5×C8⋊C4C204D4C4.D20C2×C40⋊C2C2×D40C40C2×C20C8⋊C4C42C2×C8C8C2×C4C10C2
# reps1111224222416828

Matrix representation of C8⋊D20 in GL6(𝔽41)

2280000
13390000
00286627
0030391235
00301335
0003112
,
16390000
2280000
0035331334
0013467
0023368
0011407
,
160000
0400000
0000400
000051
0040000
005100

G:=sub<GL(6,GF(41))| [2,13,0,0,0,0,28,39,0,0,0,0,0,0,28,30,3,0,0,0,6,39,0,3,0,0,6,12,13,11,0,0,27,35,35,2],[16,2,0,0,0,0,39,28,0,0,0,0,0,0,35,1,2,1,0,0,33,34,33,1,0,0,13,6,6,40,0,0,34,7,8,7],[1,0,0,0,0,0,6,40,0,0,0,0,0,0,0,0,40,5,0,0,0,0,0,1,0,0,40,5,0,0,0,0,0,1,0,0] >;

C8⋊D20 in GAP, Magma, Sage, TeX

C_8\rtimes D_{20}
% in TeX

G:=Group("C8:D20");
// GroupNames label

G:=SmallGroup(320,339);
// by ID

G=gap.SmallGroup(320,339);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,120,254,387,58,1123,136,12550]);
// Polycyclic

G:=Group<a,b,c|a^8=b^20=c^2=1,b*a*b^-1=a^5,c*a*c=a^3,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽