Copied to
clipboard

G = D8×C20order 320 = 26·5

Direct product of C20 and D8

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: D8×C20, (C4×C8)⋊7C10, C84(C2×C20), C4036(C2×C4), (C4×C40)⋊23C2, (C4×D4)⋊1C10, D41(C2×C20), C2.3(C10×D8), (D4×C20)⋊30C2, (C2×D8).7C10, C2.D814C10, C10.75(C2×D8), C2.12(D4×C20), (C10×D8).14C2, C10.144(C4×D4), (C2×C20).360D4, C4.9(C22×C20), D4⋊C421C10, C42.70(C2×C10), C22.51(D4×C10), C20.256(C4○D4), C10.116(C4○D8), (C4×C20).355C22, C20.213(C22×C4), (C2×C40).421C22, (C2×C20).904C23, (D4×C10).290C22, C2.3(C5×C4○D8), C4.1(C5×C4○D4), (C5×D4)⋊24(C2×C4), (C5×C2.D8)⋊29C2, (C2×C4).50(C5×D4), C4⋊C4.45(C2×C10), (C2×C8).65(C2×C10), (C5×D4⋊C4)⋊44C2, (C2×D4).48(C2×C10), (C2×C10).627(C2×D4), (C5×C4⋊C4).366C22, (C2×C4).79(C22×C10), SmallGroup(320,938)

Series: Derived Chief Lower central Upper central

C1C4 — D8×C20
C1C2C22C2×C4C2×C20C5×C4⋊C4C5×D4⋊C4 — D8×C20
C1C2C4 — D8×C20
C1C2×C20C4×C20 — D8×C20

Generators and relations for D8×C20
 G = < a,b,c | a20=b8=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 250 in 134 conjugacy classes, 74 normal (34 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, D4, D4, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C20, C20, C20, C2×C10, C2×C10, C4×C8, D4⋊C4, C2.D8, C4×D4, C2×D8, C40, C40, C2×C20, C2×C20, C5×D4, C5×D4, C22×C10, C4×D8, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×C40, C5×D8, C22×C20, D4×C10, C4×C40, C5×D4⋊C4, C5×C2.D8, D4×C20, C10×D8, D8×C20
Quotients: C1, C2, C4, C22, C5, C2×C4, D4, C23, C10, D8, C22×C4, C2×D4, C4○D4, C20, C2×C10, C4×D4, C2×D8, C4○D8, C2×C20, C5×D4, C22×C10, C4×D8, C5×D8, C22×C20, D4×C10, C5×C4○D4, D4×C20, C10×D8, C5×C4○D8, D8×C20

Smallest permutation representation of D8×C20
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 67 141 126 44 87 30 113)(2 68 142 127 45 88 31 114)(3 69 143 128 46 89 32 115)(4 70 144 129 47 90 33 116)(5 71 145 130 48 91 34 117)(6 72 146 131 49 92 35 118)(7 73 147 132 50 93 36 119)(8 74 148 133 51 94 37 120)(9 75 149 134 52 95 38 101)(10 76 150 135 53 96 39 102)(11 77 151 136 54 97 40 103)(12 78 152 137 55 98 21 104)(13 79 153 138 56 99 22 105)(14 80 154 139 57 100 23 106)(15 61 155 140 58 81 24 107)(16 62 156 121 59 82 25 108)(17 63 157 122 60 83 26 109)(18 64 158 123 41 84 27 110)(19 65 159 124 42 85 28 111)(20 66 160 125 43 86 29 112)
(1 113)(2 114)(3 115)(4 116)(5 117)(6 118)(7 119)(8 120)(9 101)(10 102)(11 103)(12 104)(13 105)(14 106)(15 107)(16 108)(17 109)(18 110)(19 111)(20 112)(21 78)(22 79)(23 80)(24 61)(25 62)(26 63)(27 64)(28 65)(29 66)(30 67)(31 68)(32 69)(33 70)(34 71)(35 72)(36 73)(37 74)(38 75)(39 76)(40 77)(41 123)(42 124)(43 125)(44 126)(45 127)(46 128)(47 129)(48 130)(49 131)(50 132)(51 133)(52 134)(53 135)(54 136)(55 137)(56 138)(57 139)(58 140)(59 121)(60 122)(81 155)(82 156)(83 157)(84 158)(85 159)(86 160)(87 141)(88 142)(89 143)(90 144)(91 145)(92 146)(93 147)(94 148)(95 149)(96 150)(97 151)(98 152)(99 153)(100 154)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,67,141,126,44,87,30,113)(2,68,142,127,45,88,31,114)(3,69,143,128,46,89,32,115)(4,70,144,129,47,90,33,116)(5,71,145,130,48,91,34,117)(6,72,146,131,49,92,35,118)(7,73,147,132,50,93,36,119)(8,74,148,133,51,94,37,120)(9,75,149,134,52,95,38,101)(10,76,150,135,53,96,39,102)(11,77,151,136,54,97,40,103)(12,78,152,137,55,98,21,104)(13,79,153,138,56,99,22,105)(14,80,154,139,57,100,23,106)(15,61,155,140,58,81,24,107)(16,62,156,121,59,82,25,108)(17,63,157,122,60,83,26,109)(18,64,158,123,41,84,27,110)(19,65,159,124,42,85,28,111)(20,66,160,125,43,86,29,112), (1,113)(2,114)(3,115)(4,116)(5,117)(6,118)(7,119)(8,120)(9,101)(10,102)(11,103)(12,104)(13,105)(14,106)(15,107)(16,108)(17,109)(18,110)(19,111)(20,112)(21,78)(22,79)(23,80)(24,61)(25,62)(26,63)(27,64)(28,65)(29,66)(30,67)(31,68)(32,69)(33,70)(34,71)(35,72)(36,73)(37,74)(38,75)(39,76)(40,77)(41,123)(42,124)(43,125)(44,126)(45,127)(46,128)(47,129)(48,130)(49,131)(50,132)(51,133)(52,134)(53,135)(54,136)(55,137)(56,138)(57,139)(58,140)(59,121)(60,122)(81,155)(82,156)(83,157)(84,158)(85,159)(86,160)(87,141)(88,142)(89,143)(90,144)(91,145)(92,146)(93,147)(94,148)(95,149)(96,150)(97,151)(98,152)(99,153)(100,154)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,67,141,126,44,87,30,113)(2,68,142,127,45,88,31,114)(3,69,143,128,46,89,32,115)(4,70,144,129,47,90,33,116)(5,71,145,130,48,91,34,117)(6,72,146,131,49,92,35,118)(7,73,147,132,50,93,36,119)(8,74,148,133,51,94,37,120)(9,75,149,134,52,95,38,101)(10,76,150,135,53,96,39,102)(11,77,151,136,54,97,40,103)(12,78,152,137,55,98,21,104)(13,79,153,138,56,99,22,105)(14,80,154,139,57,100,23,106)(15,61,155,140,58,81,24,107)(16,62,156,121,59,82,25,108)(17,63,157,122,60,83,26,109)(18,64,158,123,41,84,27,110)(19,65,159,124,42,85,28,111)(20,66,160,125,43,86,29,112), (1,113)(2,114)(3,115)(4,116)(5,117)(6,118)(7,119)(8,120)(9,101)(10,102)(11,103)(12,104)(13,105)(14,106)(15,107)(16,108)(17,109)(18,110)(19,111)(20,112)(21,78)(22,79)(23,80)(24,61)(25,62)(26,63)(27,64)(28,65)(29,66)(30,67)(31,68)(32,69)(33,70)(34,71)(35,72)(36,73)(37,74)(38,75)(39,76)(40,77)(41,123)(42,124)(43,125)(44,126)(45,127)(46,128)(47,129)(48,130)(49,131)(50,132)(51,133)(52,134)(53,135)(54,136)(55,137)(56,138)(57,139)(58,140)(59,121)(60,122)(81,155)(82,156)(83,157)(84,158)(85,159)(86,160)(87,141)(88,142)(89,143)(90,144)(91,145)(92,146)(93,147)(94,148)(95,149)(96,150)(97,151)(98,152)(99,153)(100,154) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,67,141,126,44,87,30,113),(2,68,142,127,45,88,31,114),(3,69,143,128,46,89,32,115),(4,70,144,129,47,90,33,116),(5,71,145,130,48,91,34,117),(6,72,146,131,49,92,35,118),(7,73,147,132,50,93,36,119),(8,74,148,133,51,94,37,120),(9,75,149,134,52,95,38,101),(10,76,150,135,53,96,39,102),(11,77,151,136,54,97,40,103),(12,78,152,137,55,98,21,104),(13,79,153,138,56,99,22,105),(14,80,154,139,57,100,23,106),(15,61,155,140,58,81,24,107),(16,62,156,121,59,82,25,108),(17,63,157,122,60,83,26,109),(18,64,158,123,41,84,27,110),(19,65,159,124,42,85,28,111),(20,66,160,125,43,86,29,112)], [(1,113),(2,114),(3,115),(4,116),(5,117),(6,118),(7,119),(8,120),(9,101),(10,102),(11,103),(12,104),(13,105),(14,106),(15,107),(16,108),(17,109),(18,110),(19,111),(20,112),(21,78),(22,79),(23,80),(24,61),(25,62),(26,63),(27,64),(28,65),(29,66),(30,67),(31,68),(32,69),(33,70),(34,71),(35,72),(36,73),(37,74),(38,75),(39,76),(40,77),(41,123),(42,124),(43,125),(44,126),(45,127),(46,128),(47,129),(48,130),(49,131),(50,132),(51,133),(52,134),(53,135),(54,136),(55,137),(56,138),(57,139),(58,140),(59,121),(60,122),(81,155),(82,156),(83,157),(84,158),(85,159),(86,160),(87,141),(88,142),(89,143),(90,144),(91,145),(92,146),(93,147),(94,148),(95,149),(96,150),(97,151),(98,152),(99,153),(100,154)]])

140 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L5A5B5C5D8A···8H10A···10L10M···10AB20A···20P20Q···20AF20AG···20AV40A···40AF
order1222222244444444444455558···810···1010···1020···2020···2020···2040···40
size1111444411112222444411112···21···14···41···12···24···42···2

140 irreducible representations

dim1111111111111122222222
type++++++++
imageC1C2C2C2C2C2C4C5C10C10C10C10C10C20D4D8C4○D4C4○D8C5×D4C5×D8C5×C4○D4C5×C4○D8
kernelD8×C20C4×C40C5×D4⋊C4C5×C2.D8D4×C20C10×D8C5×D8C4×D8C4×C8D4⋊C4C2.D8C4×D4C2×D8D8C2×C20C20C20C10C2×C4C4C4C2
# reps1121218448484322424816816

Matrix representation of D8×C20 in GL3(𝔽41) generated by

3200
040
004
,
4000
02912
02929
,
100
02912
01212
G:=sub<GL(3,GF(41))| [32,0,0,0,4,0,0,0,4],[40,0,0,0,29,29,0,12,29],[1,0,0,0,29,12,0,12,12] >;

D8×C20 in GAP, Magma, Sage, TeX

D_8\times C_{20}
% in TeX

G:=Group("D8xC20");
// GroupNames label

G:=SmallGroup(320,938);
// by ID

G=gap.SmallGroup(320,938);
# by ID

G:=PCGroup([7,-2,-2,-2,-5,-2,-2,-2,560,589,436,7004,3511,172]);
// Polycyclic

G:=Group<a,b,c|a^20=b^8=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽