Extensions 1→N→G→Q→1 with N=C2xD4xD5 and Q=C2

Direct product G=NxQ with N=C2xD4xD5 and Q=C2
dρLabelID
C22xD4xD580C2^2xD4xD5320,1612

Semidirect products G=N:Q with N=C2xD4xD5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD4xD5):1C2 = D4:D20φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):1C2320,400
(C2xD4xD5):2C2 = D20:D4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):2C2320,783
(C2xD4xD5):3C2 = D4xD20φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):3C2320,1221
(C2xD4xD5):4C2 = D4:5D20φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):4C2320,1226
(C2xD4xD5):5C2 = D5xC22wrC2φ: C2/C1C2 ⊆ Out C2xD4xD540(C2xD4xD5):5C2320,1260
(C2xD4xD5):6C2 = C24:3D10φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):6C2320,1261
(C2xD4xD5):7C2 = C24:4D10φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):7C2320,1262
(C2xD4xD5):8C2 = D5xC4:D4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):8C2320,1276
(C2xD4xD5):9C2 = C10.372+ 1+4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):9C2320,1277
(C2xD4xD5):10C2 = C10.382+ 1+4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):10C2320,1279
(C2xD4xD5):11C2 = D20:19D4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):11C2320,1281
(C2xD4xD5):12C2 = C10.402+ 1+4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):12C2320,1282
(C2xD4xD5):13C2 = D20:20D4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):13C2320,1284
(C2xD4xD5):14C2 = C10.1202+ 1+4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):14C2320,1325
(C2xD4xD5):15C2 = C10.1212+ 1+4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):15C2320,1326
(C2xD4xD5):16C2 = C42:18D10φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):16C2320,1346
(C2xD4xD5):17C2 = D20:10D4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):17C2320,1348
(C2xD4xD5):18C2 = D5xC4:1D4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):18C2320,1386
(C2xD4xD5):19C2 = C42:26D10φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):19C2320,1387
(C2xD4xD5):20C2 = D20:11D4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):20C2320,1389
(C2xD4xD5):21C2 = C2xD5xD8φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):21C2320,1426
(C2xD4xD5):22C2 = C2xD8:D5φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):22C2320,1427
(C2xD4xD5):23C2 = C2xD40:C2φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):23C2320,1431
(C2xD4xD5):24C2 = D5xC8:C22φ: C2/C1C2 ⊆ Out C2xD4xD5408+(C2xD4xD5):24C2320,1444
(C2xD4xD5):25C2 = D4xC5:D4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):25C2320,1473
(C2xD4xD5):26C2 = C10.1452+ 1+4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):26C2320,1501
(C2xD4xD5):27C2 = C2xD4:6D10φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):27C2320,1614
(C2xD4xD5):28C2 = C2xD4:8D10φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5):28C2320,1619
(C2xD4xD5):29C2 = D5x2+ 1+4φ: C2/C1C2 ⊆ Out C2xD4xD5408+(C2xD4xD5):29C2320,1622
(C2xD4xD5):30C2 = C2xD5xC4oD4φ: trivial image80(C2xD4xD5):30C2320,1618

Non-split extensions G=N.Q with N=C2xD4xD5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xD4xD5).1C2 = D5xC23:C4φ: C2/C1C2 ⊆ Out C2xD4xD5408+(C2xD4xD5).1C2320,370
(C2xD4xD5).2C2 = D5xC4.D4φ: C2/C1C2 ⊆ Out C2xD4xD5408+(C2xD4xD5).2C2320,371
(C2xD4xD5).3C2 = D5xD4:C4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5).3C2320,396
(C2xD4xD5).4C2 = (D4xD5):C4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5).4C2320,397
(C2xD4xD5).5C2 = D20.8D4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5).5C2320,403
(C2xD4xD5).6C2 = D10:6SD16φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5).6C2320,796
(C2xD4xD5).7C2 = (C2xD4):7F5φ: C2/C1C2 ⊆ Out C2xD4xD5408+(C2xD4xD5).7C2320,1108
(C2xD4xD5).8C2 = (C2xF5):D4φ: C2/C1C2 ⊆ Out C2xD4xD540(C2xD4xD5).8C2320,1117
(C2xD4xD5).9C2 = C42:11D10φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5).9C2320,1217
(C2xD4xD5).10C2 = D5xC22.D4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5).10C2320,1324
(C2xD4xD5).11C2 = D5xC4.4D4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5).11C2320,1345
(C2xD4xD5).12C2 = C2xD5xSD16φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5).12C2320,1430
(C2xD4xD5).13C2 = C2xD20:C4φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5).13C2320,1104
(C2xD4xD5).14C2 = (D4xC10):C4φ: C2/C1C2 ⊆ Out C2xD4xD5408+(C2xD4xD5).14C2320,1105
(C2xD4xD5).15C2 = D5:(C4.D4)φ: C2/C1C2 ⊆ Out C2xD4xD5408+(C2xD4xD5).15C2320,1116
(C2xD4xD5).16C2 = C2.(D4xF5)φ: C2/C1C2 ⊆ Out C2xD4xD580(C2xD4xD5).16C2320,1118
(C2xD4xD5).17C2 = C2xD4xF5φ: C2/C1C2 ⊆ Out C2xD4xD540(C2xD4xD5).17C2320,1595
(C2xD4xD5).18C2 = D10.C24φ: C2/C1C2 ⊆ Out C2xD4xD5408+(C2xD4xD5).18C2320,1596
(C2xD4xD5).19C2 = C4xD4xD5φ: trivial image80(C2xD4xD5).19C2320,1216

׿
x
:
Z
F
o
wr
Q
<