Copied to
clipboard

G = D4⋊D20order 320 = 26·5

1st semidirect product of D4 and D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D202D4, D42D20, D104D8, C4⋊C41D10, (C5×D4)⋊1D4, (C2×C8)⋊2D10, C2.8(D5×D8), (C2×D40)⋊4C2, C4.84(D4×D5), C4.1(C2×D20), D4⋊C44D5, C4⋊D201C2, C52(C22⋊D8), (C2×C40)⋊2C22, C10.22(C2×D8), D101C84C2, D206C46C2, C20.107(C2×D4), C10.19C22≀C2, (C2×D4).134D10, (C2×D20)⋊12C22, (C2×Dic5).26D4, C22.171(D4×D5), C2.10(D40⋊C2), C10.55(C8⋊C22), (C2×C20).213C23, (C22×D5).107D4, (D4×C10).34C22, C2.22(C22⋊D20), (C2×D4×D5)⋊1C2, (C2×D4⋊D5)⋊2C2, (C5×C4⋊C4)⋊3C22, (C5×D4⋊C4)⋊4C2, (C2×C52C8)⋊2C22, (C2×C4×D5).11C22, (C2×C10).226(C2×D4), (C2×C4).320(C22×D5), SmallGroup(320,400)

Series: Derived Chief Lower central Upper central

C1C2×C20 — D4⋊D20
C1C5C10C2×C10C2×C20C2×C4×D5C2×D4×D5 — D4⋊D20
C5C10C2×C20 — D4⋊D20
C1C22C2×C4D4⋊C4

Generators and relations for D4⋊D20
 G = < a,b,c,d | a4=b2=c20=d2=1, bab=cac-1=dad=a-1, cbc-1=dbd=a-1b, dcd=c-1 >

Subgroups: 1166 in 198 conjugacy classes, 45 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, C23, D5, C10, C10, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, C2×D4, C24, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C22⋊C8, D4⋊C4, D4⋊C4, C4⋊D4, C2×D8, C22×D4, C52C8, C40, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C5×D4, C5×D4, C22×D5, C22×D5, C22×C10, C22⋊D8, D40, C2×C52C8, D10⋊C4, D4⋊D5, C5×C4⋊C4, C2×C40, C2×C4×D5, C2×D20, C2×D20, D4×D5, C2×C5⋊D4, D4×C10, C23×D5, D206C4, D101C8, C5×D4⋊C4, C4⋊D20, C2×D40, C2×D4⋊D5, C2×D4×D5, D4⋊D20
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, C22≀C2, C2×D8, C8⋊C22, D20, C22×D5, C22⋊D8, C2×D20, D4×D5, C22⋊D20, D5×D8, D40⋊C2, D4⋊D20

Smallest permutation representation of D4⋊D20
On 80 points
Generators in S80
(1 22 78 53)(2 54 79 23)(3 24 80 55)(4 56 61 25)(5 26 62 57)(6 58 63 27)(7 28 64 59)(8 60 65 29)(9 30 66 41)(10 42 67 31)(11 32 68 43)(12 44 69 33)(13 34 70 45)(14 46 71 35)(15 36 72 47)(16 48 73 37)(17 38 74 49)(18 50 75 39)(19 40 76 51)(20 52 77 21)
(1 43)(2 12)(3 45)(4 14)(5 47)(6 16)(7 49)(8 18)(9 51)(10 20)(11 53)(13 55)(15 57)(17 59)(19 41)(21 42)(22 68)(23 44)(24 70)(25 46)(26 72)(27 48)(28 74)(29 50)(30 76)(31 52)(32 78)(33 54)(34 80)(35 56)(36 62)(37 58)(38 64)(39 60)(40 66)(61 71)(63 73)(65 75)(67 77)(69 79)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(1 77)(2 76)(3 75)(4 74)(5 73)(6 72)(7 71)(8 70)(9 69)(10 68)(11 67)(12 66)(13 65)(14 64)(15 63)(16 62)(17 61)(18 80)(19 79)(20 78)(21 53)(22 52)(23 51)(24 50)(25 49)(26 48)(27 47)(28 46)(29 45)(30 44)(31 43)(32 42)(33 41)(34 60)(35 59)(36 58)(37 57)(38 56)(39 55)(40 54)

G:=sub<Sym(80)| (1,22,78,53)(2,54,79,23)(3,24,80,55)(4,56,61,25)(5,26,62,57)(6,58,63,27)(7,28,64,59)(8,60,65,29)(9,30,66,41)(10,42,67,31)(11,32,68,43)(12,44,69,33)(13,34,70,45)(14,46,71,35)(15,36,72,47)(16,48,73,37)(17,38,74,49)(18,50,75,39)(19,40,76,51)(20,52,77,21), (1,43)(2,12)(3,45)(4,14)(5,47)(6,16)(7,49)(8,18)(9,51)(10,20)(11,53)(13,55)(15,57)(17,59)(19,41)(21,42)(22,68)(23,44)(24,70)(25,46)(26,72)(27,48)(28,74)(29,50)(30,76)(31,52)(32,78)(33,54)(34,80)(35,56)(36,62)(37,58)(38,64)(39,60)(40,66)(61,71)(63,73)(65,75)(67,77)(69,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,77)(2,76)(3,75)(4,74)(5,73)(6,72)(7,71)(8,70)(9,69)(10,68)(11,67)(12,66)(13,65)(14,64)(15,63)(16,62)(17,61)(18,80)(19,79)(20,78)(21,53)(22,52)(23,51)(24,50)(25,49)(26,48)(27,47)(28,46)(29,45)(30,44)(31,43)(32,42)(33,41)(34,60)(35,59)(36,58)(37,57)(38,56)(39,55)(40,54)>;

G:=Group( (1,22,78,53)(2,54,79,23)(3,24,80,55)(4,56,61,25)(5,26,62,57)(6,58,63,27)(7,28,64,59)(8,60,65,29)(9,30,66,41)(10,42,67,31)(11,32,68,43)(12,44,69,33)(13,34,70,45)(14,46,71,35)(15,36,72,47)(16,48,73,37)(17,38,74,49)(18,50,75,39)(19,40,76,51)(20,52,77,21), (1,43)(2,12)(3,45)(4,14)(5,47)(6,16)(7,49)(8,18)(9,51)(10,20)(11,53)(13,55)(15,57)(17,59)(19,41)(21,42)(22,68)(23,44)(24,70)(25,46)(26,72)(27,48)(28,74)(29,50)(30,76)(31,52)(32,78)(33,54)(34,80)(35,56)(36,62)(37,58)(38,64)(39,60)(40,66)(61,71)(63,73)(65,75)(67,77)(69,79), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (1,77)(2,76)(3,75)(4,74)(5,73)(6,72)(7,71)(8,70)(9,69)(10,68)(11,67)(12,66)(13,65)(14,64)(15,63)(16,62)(17,61)(18,80)(19,79)(20,78)(21,53)(22,52)(23,51)(24,50)(25,49)(26,48)(27,47)(28,46)(29,45)(30,44)(31,43)(32,42)(33,41)(34,60)(35,59)(36,58)(37,57)(38,56)(39,55)(40,54) );

G=PermutationGroup([[(1,22,78,53),(2,54,79,23),(3,24,80,55),(4,56,61,25),(5,26,62,57),(6,58,63,27),(7,28,64,59),(8,60,65,29),(9,30,66,41),(10,42,67,31),(11,32,68,43),(12,44,69,33),(13,34,70,45),(14,46,71,35),(15,36,72,47),(16,48,73,37),(17,38,74,49),(18,50,75,39),(19,40,76,51),(20,52,77,21)], [(1,43),(2,12),(3,45),(4,14),(5,47),(6,16),(7,49),(8,18),(9,51),(10,20),(11,53),(13,55),(15,57),(17,59),(19,41),(21,42),(22,68),(23,44),(24,70),(25,46),(26,72),(27,48),(28,74),(29,50),(30,76),(31,52),(32,78),(33,54),(34,80),(35,56),(36,62),(37,58),(38,64),(39,60),(40,66),(61,71),(63,73),(65,75),(67,77),(69,79)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(1,77),(2,76),(3,75),(4,74),(5,73),(6,72),(7,71),(8,70),(9,69),(10,68),(11,67),(12,66),(13,65),(14,64),(15,63),(16,62),(17,61),(18,80),(19,79),(20,78),(21,53),(22,52),(23,51),(24,50),(25,49),(26,48),(27,47),(28,46),(29,45),(30,44),(31,43),(32,42),(33,41),(34,60),(35,59),(36,58),(37,57),(38,56),(39,55),(40,54)]])

47 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C4D5A5B8A8B8C8D10A···10F10G10H10I10J20A20B20C20D20E20F20G20H40A···40H
order12222222222444455888810···1010101010202020202020202040···40
size111144101020204022820224420202···28888444488884···4

47 irreducible representations

dim11111111222222222244444
type+++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4D4D5D8D10D10D10D20C8⋊C22D4×D5D4×D5D5×D8D40⋊C2
kernelD4⋊D20D206C4D101C8C5×D4⋊C4C4⋊D20C2×D40C2×D4⋊D5C2×D4×D5D20C2×Dic5C5×D4C22×D5D4⋊C4D10C4⋊C4C2×C8C2×D4D4C10C4C22C2C2
# reps11111111212124222812244

Matrix representation of D4⋊D20 in GL4(𝔽41) generated by

1000
0100
00040
0010
,
40000
04000
0010
00040
,
251100
143900
001212
001229
,
393000
4200
002929
002912
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,40,0],[40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,40],[25,14,0,0,11,39,0,0,0,0,12,12,0,0,12,29],[39,4,0,0,30,2,0,0,0,0,29,29,0,0,29,12] >;

D4⋊D20 in GAP, Magma, Sage, TeX

D_4\rtimes D_{20}
% in TeX

G:=Group("D4:D20");
// GroupNames label

G:=SmallGroup(320,400);
// by ID

G=gap.SmallGroup(320,400);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,254,219,58,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^20=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=d*b*d=a^-1*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽