Copied to
clipboard

G = D5xC4:1D4order 320 = 26·5

Direct product of D5 and C4:1D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5xC4:1D4, C42:34D10, C4:1(D4xD5), (C4xD5):7D4, C20:2(C2xD4), (C2xD4):25D10, Dic5:1(C2xD4), C20:4D4:16C2, C20:D4:25C2, (C4xC20):25C22, (D5xC42):12C2, D10.109(C2xD4), (D4xC10):17C22, (C2xD20):30C22, C10.92(C22xD4), (C2xC20).507C23, (C2xC10).258C24, (C4xDic5):65C22, C23.64(C22xD5), (C22xC10).72C23, (C23xD5).71C22, C22.279(C23xD5), (C2xDic5).278C23, (C22xD5).296C23, (C2xD4xD5):18C2, C5:2(C2xC4:1D4), C2.65(C2xD4xD5), (C5xC4:1D4):5C2, (C2xC5:D4):25C22, (C2xC4xD5).320C22, (C2xC4).596(C22xD5), SmallGroup(320,1386)

Series: Derived Chief Lower central Upper central

C1C2xC10 — D5xC4:1D4
C1C5C10C2xC10C22xD5C2xC4xD5C2xD4xD5 — D5xC4:1D4
C5C2xC10 — D5xC4:1D4
C1C22C4:1D4

Generators and relations for D5xC4:1D4
 G = < a,b,c,d,e | a5=b2=c4=d4=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c-1, ede=d-1 >

Subgroups: 2286 in 498 conjugacy classes, 131 normal (12 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2xC4, C2xC4, D4, C23, C23, D5, D5, C10, C10, C42, C42, C22xC4, C2xD4, C2xD4, C24, Dic5, C20, D10, D10, C2xC10, C2xC10, C2xC42, C4:1D4, C4:1D4, C22xD4, C4xD5, D20, C2xDic5, C5:D4, C2xC20, C5xD4, C22xD5, C22xD5, C22xD5, C22xC10, C2xC4:1D4, C4xDic5, C4xC20, C2xC4xD5, C2xD20, D4xD5, C2xC5:D4, D4xC10, C23xD5, D5xC42, C20:4D4, C20:D4, C5xC4:1D4, C2xD4xD5, D5xC4:1D4
Quotients: C1, C2, C22, D4, C23, D5, C2xD4, C24, D10, C4:1D4, C22xD4, C22xD5, C2xC4:1D4, D4xD5, C23xD5, C2xD4xD5, D5xC4:1D4

Smallest permutation representation of D5xC4:1D4
On 80 points
Generators in S80
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 18)(2 17)(3 16)(4 20)(5 19)(6 11)(7 15)(8 14)(9 13)(10 12)(21 36)(22 40)(23 39)(24 38)(25 37)(26 31)(27 35)(28 34)(29 33)(30 32)(41 56)(42 60)(43 59)(44 58)(45 57)(46 51)(47 55)(48 54)(49 53)(50 52)(61 76)(62 80)(63 79)(64 78)(65 77)(66 71)(67 75)(68 74)(69 73)(70 72)
(1 54 19 49)(2 55 20 50)(3 51 16 46)(4 52 17 47)(5 53 18 48)(6 56 11 41)(7 57 12 42)(8 58 13 43)(9 59 14 44)(10 60 15 45)(21 76 36 61)(22 77 37 62)(23 78 38 63)(24 79 39 64)(25 80 40 65)(26 71 31 66)(27 72 32 67)(28 73 33 68)(29 74 34 69)(30 75 35 70)
(1 64 14 74)(2 65 15 75)(3 61 11 71)(4 62 12 72)(5 63 13 73)(6 66 16 76)(7 67 17 77)(8 68 18 78)(9 69 19 79)(10 70 20 80)(21 41 31 51)(22 42 32 52)(23 43 33 53)(24 44 34 54)(25 45 35 55)(26 46 36 56)(27 47 37 57)(28 48 38 58)(29 49 39 59)(30 50 40 60)
(1 54)(2 55)(3 51)(4 52)(5 53)(6 56)(7 57)(8 58)(9 59)(10 60)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 71)(22 72)(23 73)(24 74)(25 75)(26 76)(27 77)(28 78)(29 79)(30 80)(31 61)(32 62)(33 63)(34 64)(35 65)(36 66)(37 67)(38 68)(39 69)(40 70)

G:=sub<Sym(80)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,18)(2,17)(3,16)(4,20)(5,19)(6,11)(7,15)(8,14)(9,13)(10,12)(21,36)(22,40)(23,39)(24,38)(25,37)(26,31)(27,35)(28,34)(29,33)(30,32)(41,56)(42,60)(43,59)(44,58)(45,57)(46,51)(47,55)(48,54)(49,53)(50,52)(61,76)(62,80)(63,79)(64,78)(65,77)(66,71)(67,75)(68,74)(69,73)(70,72), (1,54,19,49)(2,55,20,50)(3,51,16,46)(4,52,17,47)(5,53,18,48)(6,56,11,41)(7,57,12,42)(8,58,13,43)(9,59,14,44)(10,60,15,45)(21,76,36,61)(22,77,37,62)(23,78,38,63)(24,79,39,64)(25,80,40,65)(26,71,31,66)(27,72,32,67)(28,73,33,68)(29,74,34,69)(30,75,35,70), (1,64,14,74)(2,65,15,75)(3,61,11,71)(4,62,12,72)(5,63,13,73)(6,66,16,76)(7,67,17,77)(8,68,18,78)(9,69,19,79)(10,70,20,80)(21,41,31,51)(22,42,32,52)(23,43,33,53)(24,44,34,54)(25,45,35,55)(26,46,36,56)(27,47,37,57)(28,48,38,58)(29,49,39,59)(30,50,40,60), (1,54)(2,55)(3,51)(4,52)(5,53)(6,56)(7,57)(8,58)(9,59)(10,60)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,18)(2,17)(3,16)(4,20)(5,19)(6,11)(7,15)(8,14)(9,13)(10,12)(21,36)(22,40)(23,39)(24,38)(25,37)(26,31)(27,35)(28,34)(29,33)(30,32)(41,56)(42,60)(43,59)(44,58)(45,57)(46,51)(47,55)(48,54)(49,53)(50,52)(61,76)(62,80)(63,79)(64,78)(65,77)(66,71)(67,75)(68,74)(69,73)(70,72), (1,54,19,49)(2,55,20,50)(3,51,16,46)(4,52,17,47)(5,53,18,48)(6,56,11,41)(7,57,12,42)(8,58,13,43)(9,59,14,44)(10,60,15,45)(21,76,36,61)(22,77,37,62)(23,78,38,63)(24,79,39,64)(25,80,40,65)(26,71,31,66)(27,72,32,67)(28,73,33,68)(29,74,34,69)(30,75,35,70), (1,64,14,74)(2,65,15,75)(3,61,11,71)(4,62,12,72)(5,63,13,73)(6,66,16,76)(7,67,17,77)(8,68,18,78)(9,69,19,79)(10,70,20,80)(21,41,31,51)(22,42,32,52)(23,43,33,53)(24,44,34,54)(25,45,35,55)(26,46,36,56)(27,47,37,57)(28,48,38,58)(29,49,39,59)(30,50,40,60), (1,54)(2,55)(3,51)(4,52)(5,53)(6,56)(7,57)(8,58)(9,59)(10,60)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,61)(32,62)(33,63)(34,64)(35,65)(36,66)(37,67)(38,68)(39,69)(40,70) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,18),(2,17),(3,16),(4,20),(5,19),(6,11),(7,15),(8,14),(9,13),(10,12),(21,36),(22,40),(23,39),(24,38),(25,37),(26,31),(27,35),(28,34),(29,33),(30,32),(41,56),(42,60),(43,59),(44,58),(45,57),(46,51),(47,55),(48,54),(49,53),(50,52),(61,76),(62,80),(63,79),(64,78),(65,77),(66,71),(67,75),(68,74),(69,73),(70,72)], [(1,54,19,49),(2,55,20,50),(3,51,16,46),(4,52,17,47),(5,53,18,48),(6,56,11,41),(7,57,12,42),(8,58,13,43),(9,59,14,44),(10,60,15,45),(21,76,36,61),(22,77,37,62),(23,78,38,63),(24,79,39,64),(25,80,40,65),(26,71,31,66),(27,72,32,67),(28,73,33,68),(29,74,34,69),(30,75,35,70)], [(1,64,14,74),(2,65,15,75),(3,61,11,71),(4,62,12,72),(5,63,13,73),(6,66,16,76),(7,67,17,77),(8,68,18,78),(9,69,19,79),(10,70,20,80),(21,41,31,51),(22,42,32,52),(23,43,33,53),(24,44,34,54),(25,45,35,55),(26,46,36,56),(27,47,37,57),(28,48,38,58),(29,49,39,59),(30,50,40,60)], [(1,54),(2,55),(3,51),(4,52),(5,53),(6,56),(7,57),(8,58),(9,59),(10,60),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,71),(22,72),(23,73),(24,74),(25,75),(26,76),(27,77),(28,78),(29,79),(30,80),(31,61),(32,62),(33,63),(34,64),(35,65),(36,66),(37,67),(38,68),(39,69),(40,70)]])

56 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O4A···4F4G···4L5A5B10A···10F10G···10N20A···20L
order12222222222222224···44···45510···1010···1020···20
size111144445555202020202···210···10222···28···84···4

56 irreducible representations

dim11111122224
type+++++++++++
imageC1C2C2C2C2C2D4D5D10D10D4xD5
kernelD5xC4:1D4D5xC42C20:4D4C20:D4C5xC4:1D4C2xD4xD5C4xD5C4:1D4C42C2xD4C4
# reps11161612221212

Matrix representation of D5xC4:1D4 in GL6(F41)

100000
010000
0040100
0033700
000010
000001
,
4000000
0400000
0040000
0033100
000010
000001
,
010000
4000000
001000
000100
0000400
0000040
,
010000
4000000
0040000
0004000
00004039
000011
,
0400000
4000000
001000
000100
0000400
000011

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,33,0,0,0,0,1,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,33,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,1,0,0,0,0,39,1],[0,40,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,1,0,0,0,0,0,1] >;

D5xC4:1D4 in GAP, Magma, Sage, TeX

D_5\times C_4\rtimes_1D_4
% in TeX

G:=Group("D5xC4:1D4");
// GroupNames label

G:=SmallGroup(320,1386);
// by ID

G=gap.SmallGroup(320,1386);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,387,570,185,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^2=c^4=d^4=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<