Extensions 1→N→G→Q→1 with N=C8⋊D10 and Q=C2

Direct product G=N×Q with N=C8⋊D10 and Q=C2
dρLabelID
C2×C8⋊D1080C2xC8:D10320,1418

Semidirect products G=N:Q with N=C8⋊D10 and Q=C2
extensionφ:Q→Out NdρLabelID
C8⋊D101C2 = D5×C8⋊C22φ: C2/C1C2 ⊆ Out C8⋊D10408+C8:D10:1C2320,1444
C8⋊D102C2 = D85D10φ: C2/C1C2 ⊆ Out C8⋊D10808+C8:D10:2C2320,1446
C8⋊D103C2 = D40⋊C22φ: C2/C1C2 ⊆ Out C8⋊D10808+C8:D10:3C2320,1449
C8⋊D104C2 = C40.C23φ: C2/C1C2 ⊆ Out C8⋊D10808+C8:D10:4C2320,1450
C8⋊D105C2 = D201D4φ: C2/C1C2 ⊆ Out C8⋊D10408+C8:D10:5C2320,374
C8⋊D106C2 = D20.3D4φ: C2/C1C2 ⊆ Out C8⋊D10808+C8:D10:6C2320,376
C8⋊D107C2 = D20.5D4φ: C2/C1C2 ⊆ Out C8⋊D10808+C8:D10:7C2320,380
C8⋊D108C2 = D44D20φ: C2/C1C2 ⊆ Out C8⋊D10404+C8:D10:8C2320,449
C8⋊D109C2 = D4.10D20φ: C2/C1C2 ⊆ Out C8⋊D10804C8:D10:9C2320,454
C8⋊D1010C2 = C8.21D20φ: C2/C1C2 ⊆ Out C8⋊D10804+C8:D10:10C2320,524
C8⋊D1011C2 = D4.11D20φ: C2/C1C2 ⊆ Out C8⋊D10804C8:D10:11C2320,1423
C8⋊D1012C2 = D4.12D20φ: C2/C1C2 ⊆ Out C8⋊D10804+C8:D10:12C2320,1424
C8⋊D1013C2 = C40.9C23φ: trivial image804C8:D10:13C2320,1420

Non-split extensions G=N.Q with N=C8⋊D10 and Q=C2
extensionφ:Q→Out NdρLabelID
C8⋊D10.1C2 = D20.6D4φ: C2/C1C2 ⊆ Out C8⋊D10808+C8:D10.1C2320,381
C8⋊D10.2C2 = C8.24D20φ: C2/C1C2 ⊆ Out C8⋊D10804C8:D10.2C2320,525

׿
×
𝔽