Copied to
clipboard

G = C2×C8⋊D10order 320 = 26·5

Direct product of C2 and C8⋊D10

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C8⋊D10, C402C23, D409C22, D205C23, C20.58C24, C23.52D20, M4(2)⋊17D10, Dic105C23, (C2×C8)⋊4D10, C82(C22×D5), (C2×D40)⋊14C2, (C2×C40)⋊7C22, (C2×C4).57D20, C4.48(C2×D20), C101(C8⋊C22), (C2×C20).203D4, C20.238(C2×D4), C40⋊C28C22, (C2×M4(2))⋊3D5, C4.55(C23×D5), C4○D2018C22, (C2×D20)⋊49C22, (C22×D20)⋊17C2, (C10×M4(2))⋊3C2, C22.73(C2×D20), C2.27(C22×D20), C10.25(C22×D4), (C2×C20).511C23, (C22×C4).265D10, (C22×C10).118D4, (C2×Dic10)⋊57C22, (C5×M4(2))⋊19C22, (C22×C20).266C22, C51(C2×C8⋊C22), (C2×C40⋊C2)⋊4C2, (C2×C4○D20)⋊26C2, (C2×C10).62(C2×D4), (C2×C4).223(C22×D5), SmallGroup(320,1418)

Series: Derived Chief Lower central Upper central

C1C20 — C2×C8⋊D10
C1C5C10C20D20C2×D20C22×D20 — C2×C8⋊D10
C5C10C20 — C2×C8⋊D10
C1C22C22×C4C2×M4(2)

Generators and relations for C2×C8⋊D10
 G = < a,b,c,d | a2=b8=c10=d2=1, ab=ba, ac=ca, ad=da, cbc-1=b5, dbd=b-1, dcd=c-1 >

Subgroups: 1438 in 298 conjugacy classes, 111 normal (25 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, D5, C10, C10, C10, C2×C8, M4(2), D8, SD16, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C24, Dic5, C20, C20, D10, C2×C10, C2×C10, C2×C10, C2×M4(2), C2×D8, C2×SD16, C8⋊C22, C22×D4, C2×C4○D4, C40, Dic10, Dic10, C4×D5, D20, D20, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C22×D5, C22×C10, C2×C8⋊C22, C40⋊C2, D40, C2×C40, C5×M4(2), C2×Dic10, C2×C4×D5, C2×D20, C2×D20, C2×D20, C4○D20, C4○D20, C2×C5⋊D4, C22×C20, C23×D5, C2×C40⋊C2, C2×D40, C8⋊D10, C10×M4(2), C22×D20, C2×C4○D20, C2×C8⋊D10
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C8⋊C22, C22×D4, D20, C22×D5, C2×C8⋊C22, C2×D20, C23×D5, C8⋊D10, C22×D20, C2×C8⋊D10

Smallest permutation representation of C2×C8⋊D10
On 80 points
Generators in S80
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 42)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(29 50)(30 41)(31 36)(32 37)(33 38)(34 39)(35 40)(51 71)(52 72)(53 73)(54 74)(55 75)(56 76)(57 77)(58 78)(59 79)(60 80)(61 66)(62 67)(63 68)(64 69)(65 70)
(1 25 40 52 67 41 14 77)(2 42 31 78 68 26 15 53)(3 27 32 54 69 43 16 79)(4 44 33 80 70 28 17 55)(5 29 34 56 61 45 18 71)(6 46 35 72 62 30 19 57)(7 21 36 58 63 47 20 73)(8 48 37 74 64 22 11 59)(9 23 38 60 65 49 12 75)(10 50 39 76 66 24 13 51)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 10)(2 9)(3 8)(4 7)(5 6)(11 32)(12 31)(13 40)(14 39)(15 38)(16 37)(17 36)(18 35)(19 34)(20 33)(21 55)(22 54)(23 53)(24 52)(25 51)(26 60)(27 59)(28 58)(29 57)(30 56)(41 76)(42 75)(43 74)(44 73)(45 72)(46 71)(47 80)(48 79)(49 78)(50 77)(61 62)(63 70)(64 69)(65 68)(66 67)

G:=sub<Sym(80)| (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,41)(31,36)(32,37)(33,38)(34,39)(35,40)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,66)(62,67)(63,68)(64,69)(65,70), (1,25,40,52,67,41,14,77)(2,42,31,78,68,26,15,53)(3,27,32,54,69,43,16,79)(4,44,33,80,70,28,17,55)(5,29,34,56,61,45,18,71)(6,46,35,72,62,30,19,57)(7,21,36,58,63,47,20,73)(8,48,37,74,64,22,11,59)(9,23,38,60,65,49,12,75)(10,50,39,76,66,24,13,51), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,32)(12,31)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33)(21,55)(22,54)(23,53)(24,52)(25,51)(26,60)(27,59)(28,58)(29,57)(30,56)(41,76)(42,75)(43,74)(44,73)(45,72)(46,71)(47,80)(48,79)(49,78)(50,77)(61,62)(63,70)(64,69)(65,68)(66,67)>;

G:=Group( (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,41)(31,36)(32,37)(33,38)(34,39)(35,40)(51,71)(52,72)(53,73)(54,74)(55,75)(56,76)(57,77)(58,78)(59,79)(60,80)(61,66)(62,67)(63,68)(64,69)(65,70), (1,25,40,52,67,41,14,77)(2,42,31,78,68,26,15,53)(3,27,32,54,69,43,16,79)(4,44,33,80,70,28,17,55)(5,29,34,56,61,45,18,71)(6,46,35,72,62,30,19,57)(7,21,36,58,63,47,20,73)(8,48,37,74,64,22,11,59)(9,23,38,60,65,49,12,75)(10,50,39,76,66,24,13,51), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,10)(2,9)(3,8)(4,7)(5,6)(11,32)(12,31)(13,40)(14,39)(15,38)(16,37)(17,36)(18,35)(19,34)(20,33)(21,55)(22,54)(23,53)(24,52)(25,51)(26,60)(27,59)(28,58)(29,57)(30,56)(41,76)(42,75)(43,74)(44,73)(45,72)(46,71)(47,80)(48,79)(49,78)(50,77)(61,62)(63,70)(64,69)(65,68)(66,67) );

G=PermutationGroup([[(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,42),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(29,50),(30,41),(31,36),(32,37),(33,38),(34,39),(35,40),(51,71),(52,72),(53,73),(54,74),(55,75),(56,76),(57,77),(58,78),(59,79),(60,80),(61,66),(62,67),(63,68),(64,69),(65,70)], [(1,25,40,52,67,41,14,77),(2,42,31,78,68,26,15,53),(3,27,32,54,69,43,16,79),(4,44,33,80,70,28,17,55),(5,29,34,56,61,45,18,71),(6,46,35,72,62,30,19,57),(7,21,36,58,63,47,20,73),(8,48,37,74,64,22,11,59),(9,23,38,60,65,49,12,75),(10,50,39,76,66,24,13,51)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,10),(2,9),(3,8),(4,7),(5,6),(11,32),(12,31),(13,40),(14,39),(15,38),(16,37),(17,36),(18,35),(19,34),(20,33),(21,55),(22,54),(23,53),(24,52),(25,51),(26,60),(27,59),(28,58),(29,57),(30,56),(41,76),(42,75),(43,74),(44,73),(45,72),(46,71),(47,80),(48,79),(49,78),(50,77),(61,62),(63,70),(64,69),(65,68),(66,67)]])

62 conjugacy classes

class 1 2A2B2C2D2E2F···2K4A4B4C4D4E4F5A5B8A8B8C8D10A···10F10G10H10I10J20A···20H20I20J20K20L40A···40P
order1222222···244444455888810···101010101020···202020202040···40
size11112220···20222220202244442···244442···244444···4

62 irreducible representations

dim11111112222222244
type+++++++++++++++++
imageC1C2C2C2C2C2C2D4D4D5D10D10D10D20D20C8⋊C22C8⋊D10
kernelC2×C8⋊D10C2×C40⋊C2C2×D40C8⋊D10C10×M4(2)C22×D20C2×C4○D20C2×C20C22×C10C2×M4(2)C2×C8M4(2)C22×C4C2×C4C23C10C2
# reps122811131248212428

Matrix representation of C2×C8⋊D10 in GL6(𝔽41)

4000000
0400000
001000
000100
000010
000001
,
0400000
100000
000010
000001
0011900
00323000
,
100000
010000
00403400
007700
000017
00003434
,
4000000
010000
00403400
000100
00003014
0000911

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,0,11,32,0,0,0,0,9,30,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,7,0,0,0,0,34,7,0,0,0,0,0,0,1,34,0,0,0,0,7,34],[40,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,34,1,0,0,0,0,0,0,30,9,0,0,0,0,14,11] >;

C2×C8⋊D10 in GAP, Magma, Sage, TeX

C_2\times C_8\rtimes D_{10}
% in TeX

G:=Group("C2xC8:D10");
// GroupNames label

G:=SmallGroup(320,1418);
// by ID

G=gap.SmallGroup(320,1418);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,675,297,80,1684,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^8=c^10=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^5,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽