Extensions 1→N→G→Q→1 with N=D83D5 and Q=C2

Direct product G=N×Q with N=D83D5 and Q=C2
dρLabelID
C2×D83D5160C2xD8:3D5320,1428

Semidirect products G=N:Q with N=D83D5 and Q=C2
extensionφ:Q→Out NdρLabelID
D83D51C2 = SD16⋊D10φ: C2/C1C2 ⊆ Out D83D5808-D8:3D5:1C2320,1445
D83D52C2 = D86D10φ: C2/C1C2 ⊆ Out D83D5808-D8:3D5:2C2320,1447
D83D53C2 = D16⋊D5φ: C2/C1C2 ⊆ Out D83D5804D8:3D5:3C2320,538
D83D54C2 = D163D5φ: C2/C1C2 ⊆ Out D83D51604-D8:3D5:4C2320,539
D83D55C2 = SD323D5φ: C2/C1C2 ⊆ Out D83D51604D8:3D5:5C2320,543
D83D56C2 = D813D10φ: C2/C1C2 ⊆ Out D83D5804D8:3D5:6C2320,1429
D83D57C2 = D20.47D4φ: C2/C1C2 ⊆ Out D83D51604-D8:3D5:7C2320,1443
D83D58C2 = D5×C4○D8φ: trivial image804D8:3D5:8C2320,1439

Non-split extensions G=N.Q with N=D83D5 and Q=C2
extensionφ:Q→Out NdρLabelID
D83D5.1C2 = SD32⋊D5φ: C2/C1C2 ⊆ Out D83D51604-D8:3D5.1C2320,542
D83D5.2C2 = D10.D8φ: C2/C1C2 ⊆ Out D83D5808-D8:3D5.2C2320,241
D83D5.3C2 = D8⋊F5φ: C2/C1C2 ⊆ Out D83D5808-D8:3D5.3C2320,1071
D83D5.4C2 = D8.F5φ: C2/C1C2 ⊆ Out D83D51608-D8:3D5.4C2320,243
D83D5.5C2 = D85F5φ: C2/C1C2 ⊆ Out D83D5808-D8:3D5.5C2320,1070

׿
×
𝔽