Copied to
clipboard

G = SD323D5order 320 = 26·5

The semidirect product of SD32 and D5 acting through Inn(SD32)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: SD323D5, D10.6D8, D8.5D10, C16.11D10, Q16.2D10, C40.19C23, C80.11C22, Dic5.25D8, D40.3C22, Dic20.4C22, C4.7(D4×D5), (D5×C16)⋊5C2, C53(C4○D16), C5⋊D164C2, C5⋊Q322C2, C16⋊D56C2, C2.22(D5×D8), D83D55C2, (C5×SD32)⋊4C2, (C4×D5).60D4, C20.13(C2×D4), C10.38(C2×D8), C52C8.26D4, Q8.D104C2, (C5×D8).5C22, C8.25(C22×D5), C52C16.6C22, (C8×D5).41C22, (C5×Q16).3C22, SmallGroup(320,543)

Series: Derived Chief Lower central Upper central

C1C40 — SD323D5
C1C5C10C20C40C8×D5D83D5 — SD323D5
C5C10C20C40 — SD323D5
C1C2C4C8SD32

Generators and relations for SD323D5
 G = < a,b,c,d | a16=b2=c5=d2=1, bab=a7, ac=ca, ad=da, bc=cb, dbd=a8b, dcd=c-1 >

Subgroups: 422 in 84 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C5, C8, C8, C2×C4, D4, Q8, D5, C10, C10, C16, C16, C2×C8, D8, D8, SD16, Q16, Q16, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C16, D16, SD32, SD32, Q32, C4○D8, C52C8, C40, Dic10, C4×D5, C4×D5, D20, C2×Dic5, C5⋊D4, C5×D4, C5×Q8, C4○D16, C52C16, C80, C8×D5, D40, Dic20, D4.D5, Q8⋊D5, C5×D8, C5×Q16, D42D5, Q82D5, D5×C16, C16⋊D5, C5⋊D16, C5⋊Q32, C5×SD32, D83D5, Q8.D10, SD323D5
Quotients: C1, C2, C22, D4, C23, D5, D8, C2×D4, D10, C2×D8, C22×D5, C4○D16, D4×D5, D5×D8, SD323D5

Smallest permutation representation of SD323D5
On 160 points
Generators in S160
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 105)(2 112)(3 103)(4 110)(5 101)(6 108)(7 99)(8 106)(9 97)(10 104)(11 111)(12 102)(13 109)(14 100)(15 107)(16 98)(17 55)(18 62)(19 53)(20 60)(21 51)(22 58)(23 49)(24 56)(25 63)(26 54)(27 61)(28 52)(29 59)(30 50)(31 57)(32 64)(33 135)(34 142)(35 133)(36 140)(37 131)(38 138)(39 129)(40 136)(41 143)(42 134)(43 141)(44 132)(45 139)(46 130)(47 137)(48 144)(65 92)(66 83)(67 90)(68 81)(69 88)(70 95)(71 86)(72 93)(73 84)(74 91)(75 82)(76 89)(77 96)(78 87)(79 94)(80 85)(113 152)(114 159)(115 150)(116 157)(117 148)(118 155)(119 146)(120 153)(121 160)(122 151)(123 158)(124 149)(125 156)(126 147)(127 154)(128 145)
(1 47 85 18 151)(2 48 86 19 152)(3 33 87 20 153)(4 34 88 21 154)(5 35 89 22 155)(6 36 90 23 156)(7 37 91 24 157)(8 38 92 25 158)(9 39 93 26 159)(10 40 94 27 160)(11 41 95 28 145)(12 42 96 29 146)(13 43 81 30 147)(14 44 82 31 148)(15 45 83 32 149)(16 46 84 17 150)(49 125 108 140 67)(50 126 109 141 68)(51 127 110 142 69)(52 128 111 143 70)(53 113 112 144 71)(54 114 97 129 72)(55 115 98 130 73)(56 116 99 131 74)(57 117 100 132 75)(58 118 101 133 76)(59 119 102 134 77)(60 120 103 135 78)(61 121 104 136 79)(62 122 105 137 80)(63 123 106 138 65)(64 124 107 139 66)
(1 121)(2 122)(3 123)(4 124)(5 125)(6 126)(7 127)(8 128)(9 113)(10 114)(11 115)(12 116)(13 117)(14 118)(15 119)(16 120)(17 135)(18 136)(19 137)(20 138)(21 139)(22 140)(23 141)(24 142)(25 143)(26 144)(27 129)(28 130)(29 131)(30 132)(31 133)(32 134)(33 63)(34 64)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(43 57)(44 58)(45 59)(46 60)(47 61)(48 62)(65 87)(66 88)(67 89)(68 90)(69 91)(70 92)(71 93)(72 94)(73 95)(74 96)(75 81)(76 82)(77 83)(78 84)(79 85)(80 86)(97 160)(98 145)(99 146)(100 147)(101 148)(102 149)(103 150)(104 151)(105 152)(106 153)(107 154)(108 155)(109 156)(110 157)(111 158)(112 159)

G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,105)(2,112)(3,103)(4,110)(5,101)(6,108)(7,99)(8,106)(9,97)(10,104)(11,111)(12,102)(13,109)(14,100)(15,107)(16,98)(17,55)(18,62)(19,53)(20,60)(21,51)(22,58)(23,49)(24,56)(25,63)(26,54)(27,61)(28,52)(29,59)(30,50)(31,57)(32,64)(33,135)(34,142)(35,133)(36,140)(37,131)(38,138)(39,129)(40,136)(41,143)(42,134)(43,141)(44,132)(45,139)(46,130)(47,137)(48,144)(65,92)(66,83)(67,90)(68,81)(69,88)(70,95)(71,86)(72,93)(73,84)(74,91)(75,82)(76,89)(77,96)(78,87)(79,94)(80,85)(113,152)(114,159)(115,150)(116,157)(117,148)(118,155)(119,146)(120,153)(121,160)(122,151)(123,158)(124,149)(125,156)(126,147)(127,154)(128,145), (1,47,85,18,151)(2,48,86,19,152)(3,33,87,20,153)(4,34,88,21,154)(5,35,89,22,155)(6,36,90,23,156)(7,37,91,24,157)(8,38,92,25,158)(9,39,93,26,159)(10,40,94,27,160)(11,41,95,28,145)(12,42,96,29,146)(13,43,81,30,147)(14,44,82,31,148)(15,45,83,32,149)(16,46,84,17,150)(49,125,108,140,67)(50,126,109,141,68)(51,127,110,142,69)(52,128,111,143,70)(53,113,112,144,71)(54,114,97,129,72)(55,115,98,130,73)(56,116,99,131,74)(57,117,100,132,75)(58,118,101,133,76)(59,119,102,134,77)(60,120,103,135,78)(61,121,104,136,79)(62,122,105,137,80)(63,123,106,138,65)(64,124,107,139,66), (1,121)(2,122)(3,123)(4,124)(5,125)(6,126)(7,127)(8,128)(9,113)(10,114)(11,115)(12,116)(13,117)(14,118)(15,119)(16,120)(17,135)(18,136)(19,137)(20,138)(21,139)(22,140)(23,141)(24,142)(25,143)(26,144)(27,129)(28,130)(29,131)(30,132)(31,133)(32,134)(33,63)(34,64)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(43,57)(44,58)(45,59)(46,60)(47,61)(48,62)(65,87)(66,88)(67,89)(68,90)(69,91)(70,92)(71,93)(72,94)(73,95)(74,96)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86)(97,160)(98,145)(99,146)(100,147)(101,148)(102,149)(103,150)(104,151)(105,152)(106,153)(107,154)(108,155)(109,156)(110,157)(111,158)(112,159)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,105)(2,112)(3,103)(4,110)(5,101)(6,108)(7,99)(8,106)(9,97)(10,104)(11,111)(12,102)(13,109)(14,100)(15,107)(16,98)(17,55)(18,62)(19,53)(20,60)(21,51)(22,58)(23,49)(24,56)(25,63)(26,54)(27,61)(28,52)(29,59)(30,50)(31,57)(32,64)(33,135)(34,142)(35,133)(36,140)(37,131)(38,138)(39,129)(40,136)(41,143)(42,134)(43,141)(44,132)(45,139)(46,130)(47,137)(48,144)(65,92)(66,83)(67,90)(68,81)(69,88)(70,95)(71,86)(72,93)(73,84)(74,91)(75,82)(76,89)(77,96)(78,87)(79,94)(80,85)(113,152)(114,159)(115,150)(116,157)(117,148)(118,155)(119,146)(120,153)(121,160)(122,151)(123,158)(124,149)(125,156)(126,147)(127,154)(128,145), (1,47,85,18,151)(2,48,86,19,152)(3,33,87,20,153)(4,34,88,21,154)(5,35,89,22,155)(6,36,90,23,156)(7,37,91,24,157)(8,38,92,25,158)(9,39,93,26,159)(10,40,94,27,160)(11,41,95,28,145)(12,42,96,29,146)(13,43,81,30,147)(14,44,82,31,148)(15,45,83,32,149)(16,46,84,17,150)(49,125,108,140,67)(50,126,109,141,68)(51,127,110,142,69)(52,128,111,143,70)(53,113,112,144,71)(54,114,97,129,72)(55,115,98,130,73)(56,116,99,131,74)(57,117,100,132,75)(58,118,101,133,76)(59,119,102,134,77)(60,120,103,135,78)(61,121,104,136,79)(62,122,105,137,80)(63,123,106,138,65)(64,124,107,139,66), (1,121)(2,122)(3,123)(4,124)(5,125)(6,126)(7,127)(8,128)(9,113)(10,114)(11,115)(12,116)(13,117)(14,118)(15,119)(16,120)(17,135)(18,136)(19,137)(20,138)(21,139)(22,140)(23,141)(24,142)(25,143)(26,144)(27,129)(28,130)(29,131)(30,132)(31,133)(32,134)(33,63)(34,64)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(43,57)(44,58)(45,59)(46,60)(47,61)(48,62)(65,87)(66,88)(67,89)(68,90)(69,91)(70,92)(71,93)(72,94)(73,95)(74,96)(75,81)(76,82)(77,83)(78,84)(79,85)(80,86)(97,160)(98,145)(99,146)(100,147)(101,148)(102,149)(103,150)(104,151)(105,152)(106,153)(107,154)(108,155)(109,156)(110,157)(111,158)(112,159) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,105),(2,112),(3,103),(4,110),(5,101),(6,108),(7,99),(8,106),(9,97),(10,104),(11,111),(12,102),(13,109),(14,100),(15,107),(16,98),(17,55),(18,62),(19,53),(20,60),(21,51),(22,58),(23,49),(24,56),(25,63),(26,54),(27,61),(28,52),(29,59),(30,50),(31,57),(32,64),(33,135),(34,142),(35,133),(36,140),(37,131),(38,138),(39,129),(40,136),(41,143),(42,134),(43,141),(44,132),(45,139),(46,130),(47,137),(48,144),(65,92),(66,83),(67,90),(68,81),(69,88),(70,95),(71,86),(72,93),(73,84),(74,91),(75,82),(76,89),(77,96),(78,87),(79,94),(80,85),(113,152),(114,159),(115,150),(116,157),(117,148),(118,155),(119,146),(120,153),(121,160),(122,151),(123,158),(124,149),(125,156),(126,147),(127,154),(128,145)], [(1,47,85,18,151),(2,48,86,19,152),(3,33,87,20,153),(4,34,88,21,154),(5,35,89,22,155),(6,36,90,23,156),(7,37,91,24,157),(8,38,92,25,158),(9,39,93,26,159),(10,40,94,27,160),(11,41,95,28,145),(12,42,96,29,146),(13,43,81,30,147),(14,44,82,31,148),(15,45,83,32,149),(16,46,84,17,150),(49,125,108,140,67),(50,126,109,141,68),(51,127,110,142,69),(52,128,111,143,70),(53,113,112,144,71),(54,114,97,129,72),(55,115,98,130,73),(56,116,99,131,74),(57,117,100,132,75),(58,118,101,133,76),(59,119,102,134,77),(60,120,103,135,78),(61,121,104,136,79),(62,122,105,137,80),(63,123,106,138,65),(64,124,107,139,66)], [(1,121),(2,122),(3,123),(4,124),(5,125),(6,126),(7,127),(8,128),(9,113),(10,114),(11,115),(12,116),(13,117),(14,118),(15,119),(16,120),(17,135),(18,136),(19,137),(20,138),(21,139),(22,140),(23,141),(24,142),(25,143),(26,144),(27,129),(28,130),(29,131),(30,132),(31,133),(32,134),(33,63),(34,64),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(43,57),(44,58),(45,59),(46,60),(47,61),(48,62),(65,87),(66,88),(67,89),(68,90),(69,91),(70,92),(71,93),(72,94),(73,95),(74,96),(75,81),(76,82),(77,83),(78,84),(79,85),(80,86),(97,160),(98,145),(99,146),(100,147),(101,148),(102,149),(103,150),(104,151),(105,152),(106,153),(107,154),(108,155),(109,156),(110,157),(111,158),(112,159)]])

44 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E5A5B8A8B8C8D10A10B10C10D16A16B16C16D16E16F16G16H20A20B20C20D40A40B40C40D80A···80H
order1222244444558888101010101616161616161616202020204040404080···80
size11810402558402222101022161622221010101044161644444···4

44 irreducible representations

dim11111111222222222444
type++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D5D8D8D10D10D10C4○D16D4×D5D5×D8SD323D5
kernelSD323D5D5×C16C16⋊D5C5⋊D16C5⋊Q32C5×SD32D83D5Q8.D10C52C8C4×D5SD32Dic5D10C16D8Q16C5C4C2C1
# reps11111111112222228248

Matrix representation of SD323D5 in GL4(𝔽241) generated by

1384100
20013800
0010
0001
,
21415600
1562700
002400
000240
,
1000
0100
00511
002400
,
017700
64000
00240190
0001
G:=sub<GL(4,GF(241))| [138,200,0,0,41,138,0,0,0,0,1,0,0,0,0,1],[214,156,0,0,156,27,0,0,0,0,240,0,0,0,0,240],[1,0,0,0,0,1,0,0,0,0,51,240,0,0,1,0],[0,64,0,0,177,0,0,0,0,0,240,0,0,0,190,1] >;

SD323D5 in GAP, Magma, Sage, TeX

{\rm SD}_{32}\rtimes_3D_5
% in TeX

G:=Group("SD32:3D5");
// GroupNames label

G:=SmallGroup(320,543);
// by ID

G=gap.SmallGroup(320,543);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,477,758,135,184,346,185,192,851,438,102,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^16=b^2=c^5=d^2=1,b*a*b=a^7,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^8*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽