Extensions 1→N→G→Q→1 with N=D4 and Q=C4×D5

Direct product G=N×Q with N=D4 and Q=C4×D5
dρLabelID
C4×D4×D580C4xD4xD5320,1216

Semidirect products G=N:Q with N=D4 and Q=C4×D5
extensionφ:Q→Out NdρLabelID
D41(C4×D5) = Dic54D8φ: C4×D5/Dic5C2 ⊆ Out D4160D4:1(C4xD5)320,383
D42(C4×D5) = D4⋊D56C4φ: C4×D5/Dic5C2 ⊆ Out D4160D4:2(C4xD5)320,412
D43(C4×D5) = C4×D4⋊D5φ: C4×D5/C20C2 ⊆ Out D4160D4:3(C4xD5)320,640
D44(C4×D5) = C42.48D10φ: C4×D5/C20C2 ⊆ Out D4160D4:4(C4xD5)320,641
D45(C4×D5) = D5×D4⋊C4φ: C4×D5/D10C2 ⊆ Out D480D4:5(C4xD5)320,396
D46(C4×D5) = D4⋊(C4×D5)φ: C4×D5/D10C2 ⊆ Out D4160D4:6(C4xD5)320,398
D47(C4×D5) = D5×C4≀C2φ: C4×D5/D10C2 ⊆ Out D4404D4:7(C4xD5)320,447
D48(C4×D5) = C4×D42D5φ: trivial image160D4:8(C4xD5)320,1208
D49(C4×D5) = C4211D10φ: trivial image80D4:9(C4xD5)320,1217
D410(C4×D5) = C42.108D10φ: trivial image160D4:10(C4xD5)320,1218

Non-split extensions G=N.Q with N=D4 and Q=C4×D5
extensionφ:Q→Out NdρLabelID
D4.1(C4×D5) = D4.D55C4φ: C4×D5/Dic5C2 ⊆ Out D4160D4.1(C4xD5)320,384
D4.2(C4×D5) = Dic56SD16φ: C4×D5/Dic5C2 ⊆ Out D4160D4.2(C4xD5)320,385
D4.3(C4×D5) = M4(2).22D10φ: C4×D5/Dic5C2 ⊆ Out D4804D4.3(C4xD5)320,450
D4.4(C4×D5) = C42.196D10φ: C4×D5/Dic5C2 ⊆ Out D4804D4.4(C4xD5)320,451
D4.5(C4×D5) = C4×D4.D5φ: C4×D5/C20C2 ⊆ Out D4160D4.5(C4xD5)320,644
D4.6(C4×D5) = C42.51D10φ: C4×D5/C20C2 ⊆ Out D4160D4.6(C4xD5)320,645
D4.7(C4×D5) = C40.93D4φ: C4×D5/C20C2 ⊆ Out D4804D4.7(C4xD5)320,771
D4.8(C4×D5) = C40.50D4φ: C4×D5/C20C2 ⊆ Out D4804D4.8(C4xD5)320,772
D4.9(C4×D5) = (D4×D5)⋊C4φ: C4×D5/D10C2 ⊆ Out D480D4.9(C4xD5)320,397
D4.10(C4×D5) = D42D5⋊C4φ: C4×D5/D10C2 ⊆ Out D4160D4.10(C4xD5)320,399
D4.11(C4×D5) = C42⋊D10φ: C4×D5/D10C2 ⊆ Out D4804D4.11(C4xD5)320,448
D4.12(C4×D5) = D5×C8○D4φ: trivial image804D4.12(C4xD5)320,1421
D4.13(C4×D5) = C20.72C24φ: trivial image804D4.13(C4xD5)320,1422

׿
×
𝔽