Extensions 1→N→G→Q→1 with N=D4 and Q=C4xD5

Direct product G=NxQ with N=D4 and Q=C4xD5
dρLabelID
C4xD4xD580C4xD4xD5320,1216

Semidirect products G=N:Q with N=D4 and Q=C4xD5
extensionφ:Q→Out NdρLabelID
D4:1(C4xD5) = Dic5:4D8φ: C4xD5/Dic5C2 ⊆ Out D4160D4:1(C4xD5)320,383
D4:2(C4xD5) = D4:D5:6C4φ: C4xD5/Dic5C2 ⊆ Out D4160D4:2(C4xD5)320,412
D4:3(C4xD5) = C4xD4:D5φ: C4xD5/C20C2 ⊆ Out D4160D4:3(C4xD5)320,640
D4:4(C4xD5) = C42.48D10φ: C4xD5/C20C2 ⊆ Out D4160D4:4(C4xD5)320,641
D4:5(C4xD5) = D5xD4:C4φ: C4xD5/D10C2 ⊆ Out D480D4:5(C4xD5)320,396
D4:6(C4xD5) = D4:(C4xD5)φ: C4xD5/D10C2 ⊆ Out D4160D4:6(C4xD5)320,398
D4:7(C4xD5) = D5xC4wrC2φ: C4xD5/D10C2 ⊆ Out D4404D4:7(C4xD5)320,447
D4:8(C4xD5) = C4xD4:2D5φ: trivial image160D4:8(C4xD5)320,1208
D4:9(C4xD5) = C42:11D10φ: trivial image80D4:9(C4xD5)320,1217
D4:10(C4xD5) = C42.108D10φ: trivial image160D4:10(C4xD5)320,1218

Non-split extensions G=N.Q with N=D4 and Q=C4xD5
extensionφ:Q→Out NdρLabelID
D4.1(C4xD5) = D4.D5:5C4φ: C4xD5/Dic5C2 ⊆ Out D4160D4.1(C4xD5)320,384
D4.2(C4xD5) = Dic5:6SD16φ: C4xD5/Dic5C2 ⊆ Out D4160D4.2(C4xD5)320,385
D4.3(C4xD5) = M4(2).22D10φ: C4xD5/Dic5C2 ⊆ Out D4804D4.3(C4xD5)320,450
D4.4(C4xD5) = C42.196D10φ: C4xD5/Dic5C2 ⊆ Out D4804D4.4(C4xD5)320,451
D4.5(C4xD5) = C4xD4.D5φ: C4xD5/C20C2 ⊆ Out D4160D4.5(C4xD5)320,644
D4.6(C4xD5) = C42.51D10φ: C4xD5/C20C2 ⊆ Out D4160D4.6(C4xD5)320,645
D4.7(C4xD5) = C40.93D4φ: C4xD5/C20C2 ⊆ Out D4804D4.7(C4xD5)320,771
D4.8(C4xD5) = C40.50D4φ: C4xD5/C20C2 ⊆ Out D4804D4.8(C4xD5)320,772
D4.9(C4xD5) = (D4xD5):C4φ: C4xD5/D10C2 ⊆ Out D480D4.9(C4xD5)320,397
D4.10(C4xD5) = D4:2D5:C4φ: C4xD5/D10C2 ⊆ Out D4160D4.10(C4xD5)320,399
D4.11(C4xD5) = C42:D10φ: C4xD5/D10C2 ⊆ Out D4804D4.11(C4xD5)320,448
D4.12(C4xD5) = D5xC8oD4φ: trivial image804D4.12(C4xD5)320,1421
D4.13(C4xD5) = C20.72C24φ: trivial image804D4.13(C4xD5)320,1422

׿
x
:
Z
F
o
wr
Q
<