Copied to
clipboard

G = C4×D4⋊D5order 320 = 26·5

Direct product of C4 and D4⋊D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4×D4⋊D5, C208D8, C42.207D10, C55(C4×D8), D43(C4×D5), (C4×D4)⋊1D5, (D4×C20)⋊1C2, (C4×D20)⋊19C2, D2020(C2×C4), C10.99(C4×D4), C10.51(C2×D8), C4⋊C4.241D10, (C2×C20).253D4, D206C444C2, (C2×D4).188D10, C20.48(C4○D4), C10.88(C4○D8), C4.36(C4○D20), D4⋊Dic543C2, C10.D845C2, C20.56(C22×C4), (C4×C20).84C22, (C2×C20).335C23, C2.3(D4.8D10), (C2×D20).244C22, (D4×C10).230C22, C4⋊Dic5.326C22, C4.21(C2×C4×D5), (C4×C52C8)⋊8C2, C2.3(C2×D4⋊D5), C52C820(C2×C4), (C5×D4)⋊18(C2×C4), C2.15(C4×C5⋊D4), (C2×D4⋊D5).10C2, (C2×C10).466(C2×D4), C22.75(C2×C5⋊D4), (C2×C4).101(C5⋊D4), (C5×C4⋊C4).272C22, (C2×C4).435(C22×D5), (C2×C52C8).252C22, SmallGroup(320,640)

Series: Derived Chief Lower central Upper central

C1C20 — C4×D4⋊D5
C1C5C10C2×C10C2×C20C2×D20C2×D4⋊D5 — C4×D4⋊D5
C5C10C20 — C4×D4⋊D5
C1C2×C4C42C4×D4

Generators and relations for C4×D4⋊D5
 G = < a,b,c,d,e | a4=b4=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe=b-1, bd=db, cd=dc, ece=bc, ede=d-1 >

Subgroups: 502 in 134 conjugacy classes, 55 normal (39 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, D4, C23, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C2×D4, Dic5, C20, C20, C20, D10, C2×C10, C2×C10, C4×C8, D4⋊C4, C2.D8, C4×D4, C4×D4, C2×D8, C52C8, C52C8, C4×D5, D20, D20, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×D4, C22×D5, C22×C10, C4×D8, C2×C52C8, C4⋊Dic5, D10⋊C4, D4⋊D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×C4×D5, C2×D20, C22×C20, D4×C10, C4×C52C8, C10.D8, D206C4, D4⋊Dic5, C4×D20, C2×D4⋊D5, D4×C20, C4×D4⋊D5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, D8, C22×C4, C2×D4, C4○D4, D10, C4×D4, C2×D8, C4○D8, C4×D5, C5⋊D4, C22×D5, C4×D8, D4⋊D5, C2×C4×D5, C4○D20, C2×C5⋊D4, C4×C5⋊D4, C2×D4⋊D5, D4.8D10, C4×D4⋊D5

Smallest permutation representation of C4×D4⋊D5
On 160 points
Generators in S160
(1 61 21 41)(2 62 22 42)(3 63 23 43)(4 64 24 44)(5 65 25 45)(6 66 26 46)(7 67 27 47)(8 68 28 48)(9 69 29 49)(10 70 30 50)(11 71 31 51)(12 72 32 52)(13 73 33 53)(14 74 34 54)(15 75 35 55)(16 76 36 56)(17 77 37 57)(18 78 38 58)(19 79 39 59)(20 80 40 60)(81 141 101 121)(82 142 102 122)(83 143 103 123)(84 144 104 124)(85 145 105 125)(86 146 106 126)(87 147 107 127)(88 148 108 128)(89 149 109 129)(90 150 110 130)(91 151 111 131)(92 152 112 132)(93 153 113 133)(94 154 114 134)(95 155 115 135)(96 156 116 136)(97 157 117 137)(98 158 118 138)(99 159 119 139)(100 160 120 140)
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)(41 56 46 51)(42 57 47 52)(43 58 48 53)(44 59 49 54)(45 60 50 55)(61 76 66 71)(62 77 67 72)(63 78 68 73)(64 79 69 74)(65 80 70 75)(81 91 86 96)(82 92 87 97)(83 93 88 98)(84 94 89 99)(85 95 90 100)(101 111 106 116)(102 112 107 117)(103 113 108 118)(104 114 109 119)(105 115 110 120)(121 131 126 136)(122 132 127 137)(123 133 128 138)(124 134 129 139)(125 135 130 140)(141 151 146 156)(142 152 147 157)(143 153 148 158)(144 154 149 159)(145 155 150 160)
(1 116)(2 117)(3 118)(4 119)(5 120)(6 111)(7 112)(8 113)(9 114)(10 115)(11 101)(12 102)(13 103)(14 104)(15 105)(16 106)(17 107)(18 108)(19 109)(20 110)(21 96)(22 97)(23 98)(24 99)(25 100)(26 91)(27 92)(28 93)(29 94)(30 95)(31 81)(32 82)(33 83)(34 84)(35 85)(36 86)(37 87)(38 88)(39 89)(40 90)(41 156)(42 157)(43 158)(44 159)(45 160)(46 151)(47 152)(48 153)(49 154)(50 155)(51 141)(52 142)(53 143)(54 144)(55 145)(56 146)(57 147)(58 148)(59 149)(60 150)(61 136)(62 137)(63 138)(64 139)(65 140)(66 131)(67 132)(68 133)(69 134)(70 135)(71 121)(72 122)(73 123)(74 124)(75 125)(76 126)(77 127)(78 128)(79 129)(80 130)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 25)(2 24)(3 23)(4 22)(5 21)(6 30)(7 29)(8 28)(9 27)(10 26)(11 40)(12 39)(13 38)(14 37)(15 36)(16 35)(17 34)(18 33)(19 32)(20 31)(41 65)(42 64)(43 63)(44 62)(45 61)(46 70)(47 69)(48 68)(49 67)(50 66)(51 80)(52 79)(53 78)(54 77)(55 76)(56 75)(57 74)(58 73)(59 72)(60 71)(81 115)(82 114)(83 113)(84 112)(85 111)(86 120)(87 119)(88 118)(89 117)(90 116)(91 105)(92 104)(93 103)(94 102)(95 101)(96 110)(97 109)(98 108)(99 107)(100 106)(121 155)(122 154)(123 153)(124 152)(125 151)(126 160)(127 159)(128 158)(129 157)(130 156)(131 145)(132 144)(133 143)(134 142)(135 141)(136 150)(137 149)(138 148)(139 147)(140 146)

G:=sub<Sym(160)| (1,61,21,41)(2,62,22,42)(3,63,23,43)(4,64,24,44)(5,65,25,45)(6,66,26,46)(7,67,27,47)(8,68,28,48)(9,69,29,49)(10,70,30,50)(11,71,31,51)(12,72,32,52)(13,73,33,53)(14,74,34,54)(15,75,35,55)(16,76,36,56)(17,77,37,57)(18,78,38,58)(19,79,39,59)(20,80,40,60)(81,141,101,121)(82,142,102,122)(83,143,103,123)(84,144,104,124)(85,145,105,125)(86,146,106,126)(87,147,107,127)(88,148,108,128)(89,149,109,129)(90,150,110,130)(91,151,111,131)(92,152,112,132)(93,153,113,133)(94,154,114,134)(95,155,115,135)(96,156,116,136)(97,157,117,137)(98,158,118,138)(99,159,119,139)(100,160,120,140), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,76,66,71)(62,77,67,72)(63,78,68,73)(64,79,69,74)(65,80,70,75)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120)(121,131,126,136)(122,132,127,137)(123,133,128,138)(124,134,129,139)(125,135,130,140)(141,151,146,156)(142,152,147,157)(143,153,148,158)(144,154,149,159)(145,155,150,160), (1,116)(2,117)(3,118)(4,119)(5,120)(6,111)(7,112)(8,113)(9,114)(10,115)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,96)(22,97)(23,98)(24,99)(25,100)(26,91)(27,92)(28,93)(29,94)(30,95)(31,81)(32,82)(33,83)(34,84)(35,85)(36,86)(37,87)(38,88)(39,89)(40,90)(41,156)(42,157)(43,158)(44,159)(45,160)(46,151)(47,152)(48,153)(49,154)(50,155)(51,141)(52,142)(53,143)(54,144)(55,145)(56,146)(57,147)(58,148)(59,149)(60,150)(61,136)(62,137)(63,138)(64,139)(65,140)(66,131)(67,132)(68,133)(69,134)(70,135)(71,121)(72,122)(73,123)(74,124)(75,125)(76,126)(77,127)(78,128)(79,129)(80,130), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,25)(2,24)(3,23)(4,22)(5,21)(6,30)(7,29)(8,28)(9,27)(10,26)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(41,65)(42,64)(43,63)(44,62)(45,61)(46,70)(47,69)(48,68)(49,67)(50,66)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(81,115)(82,114)(83,113)(84,112)(85,111)(86,120)(87,119)(88,118)(89,117)(90,116)(91,105)(92,104)(93,103)(94,102)(95,101)(96,110)(97,109)(98,108)(99,107)(100,106)(121,155)(122,154)(123,153)(124,152)(125,151)(126,160)(127,159)(128,158)(129,157)(130,156)(131,145)(132,144)(133,143)(134,142)(135,141)(136,150)(137,149)(138,148)(139,147)(140,146)>;

G:=Group( (1,61,21,41)(2,62,22,42)(3,63,23,43)(4,64,24,44)(5,65,25,45)(6,66,26,46)(7,67,27,47)(8,68,28,48)(9,69,29,49)(10,70,30,50)(11,71,31,51)(12,72,32,52)(13,73,33,53)(14,74,34,54)(15,75,35,55)(16,76,36,56)(17,77,37,57)(18,78,38,58)(19,79,39,59)(20,80,40,60)(81,141,101,121)(82,142,102,122)(83,143,103,123)(84,144,104,124)(85,145,105,125)(86,146,106,126)(87,147,107,127)(88,148,108,128)(89,149,109,129)(90,150,110,130)(91,151,111,131)(92,152,112,132)(93,153,113,133)(94,154,114,134)(95,155,115,135)(96,156,116,136)(97,157,117,137)(98,158,118,138)(99,159,119,139)(100,160,120,140), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,76,66,71)(62,77,67,72)(63,78,68,73)(64,79,69,74)(65,80,70,75)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120)(121,131,126,136)(122,132,127,137)(123,133,128,138)(124,134,129,139)(125,135,130,140)(141,151,146,156)(142,152,147,157)(143,153,148,158)(144,154,149,159)(145,155,150,160), (1,116)(2,117)(3,118)(4,119)(5,120)(6,111)(7,112)(8,113)(9,114)(10,115)(11,101)(12,102)(13,103)(14,104)(15,105)(16,106)(17,107)(18,108)(19,109)(20,110)(21,96)(22,97)(23,98)(24,99)(25,100)(26,91)(27,92)(28,93)(29,94)(30,95)(31,81)(32,82)(33,83)(34,84)(35,85)(36,86)(37,87)(38,88)(39,89)(40,90)(41,156)(42,157)(43,158)(44,159)(45,160)(46,151)(47,152)(48,153)(49,154)(50,155)(51,141)(52,142)(53,143)(54,144)(55,145)(56,146)(57,147)(58,148)(59,149)(60,150)(61,136)(62,137)(63,138)(64,139)(65,140)(66,131)(67,132)(68,133)(69,134)(70,135)(71,121)(72,122)(73,123)(74,124)(75,125)(76,126)(77,127)(78,128)(79,129)(80,130), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,25)(2,24)(3,23)(4,22)(5,21)(6,30)(7,29)(8,28)(9,27)(10,26)(11,40)(12,39)(13,38)(14,37)(15,36)(16,35)(17,34)(18,33)(19,32)(20,31)(41,65)(42,64)(43,63)(44,62)(45,61)(46,70)(47,69)(48,68)(49,67)(50,66)(51,80)(52,79)(53,78)(54,77)(55,76)(56,75)(57,74)(58,73)(59,72)(60,71)(81,115)(82,114)(83,113)(84,112)(85,111)(86,120)(87,119)(88,118)(89,117)(90,116)(91,105)(92,104)(93,103)(94,102)(95,101)(96,110)(97,109)(98,108)(99,107)(100,106)(121,155)(122,154)(123,153)(124,152)(125,151)(126,160)(127,159)(128,158)(129,157)(130,156)(131,145)(132,144)(133,143)(134,142)(135,141)(136,150)(137,149)(138,148)(139,147)(140,146) );

G=PermutationGroup([[(1,61,21,41),(2,62,22,42),(3,63,23,43),(4,64,24,44),(5,65,25,45),(6,66,26,46),(7,67,27,47),(8,68,28,48),(9,69,29,49),(10,70,30,50),(11,71,31,51),(12,72,32,52),(13,73,33,53),(14,74,34,54),(15,75,35,55),(16,76,36,56),(17,77,37,57),(18,78,38,58),(19,79,39,59),(20,80,40,60),(81,141,101,121),(82,142,102,122),(83,143,103,123),(84,144,104,124),(85,145,105,125),(86,146,106,126),(87,147,107,127),(88,148,108,128),(89,149,109,129),(90,150,110,130),(91,151,111,131),(92,152,112,132),(93,153,113,133),(94,154,114,134),(95,155,115,135),(96,156,116,136),(97,157,117,137),(98,158,118,138),(99,159,119,139),(100,160,120,140)], [(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35),(41,56,46,51),(42,57,47,52),(43,58,48,53),(44,59,49,54),(45,60,50,55),(61,76,66,71),(62,77,67,72),(63,78,68,73),(64,79,69,74),(65,80,70,75),(81,91,86,96),(82,92,87,97),(83,93,88,98),(84,94,89,99),(85,95,90,100),(101,111,106,116),(102,112,107,117),(103,113,108,118),(104,114,109,119),(105,115,110,120),(121,131,126,136),(122,132,127,137),(123,133,128,138),(124,134,129,139),(125,135,130,140),(141,151,146,156),(142,152,147,157),(143,153,148,158),(144,154,149,159),(145,155,150,160)], [(1,116),(2,117),(3,118),(4,119),(5,120),(6,111),(7,112),(8,113),(9,114),(10,115),(11,101),(12,102),(13,103),(14,104),(15,105),(16,106),(17,107),(18,108),(19,109),(20,110),(21,96),(22,97),(23,98),(24,99),(25,100),(26,91),(27,92),(28,93),(29,94),(30,95),(31,81),(32,82),(33,83),(34,84),(35,85),(36,86),(37,87),(38,88),(39,89),(40,90),(41,156),(42,157),(43,158),(44,159),(45,160),(46,151),(47,152),(48,153),(49,154),(50,155),(51,141),(52,142),(53,143),(54,144),(55,145),(56,146),(57,147),(58,148),(59,149),(60,150),(61,136),(62,137),(63,138),(64,139),(65,140),(66,131),(67,132),(68,133),(69,134),(70,135),(71,121),(72,122),(73,123),(74,124),(75,125),(76,126),(77,127),(78,128),(79,129),(80,130)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,25),(2,24),(3,23),(4,22),(5,21),(6,30),(7,29),(8,28),(9,27),(10,26),(11,40),(12,39),(13,38),(14,37),(15,36),(16,35),(17,34),(18,33),(19,32),(20,31),(41,65),(42,64),(43,63),(44,62),(45,61),(46,70),(47,69),(48,68),(49,67),(50,66),(51,80),(52,79),(53,78),(54,77),(55,76),(56,75),(57,74),(58,73),(59,72),(60,71),(81,115),(82,114),(83,113),(84,112),(85,111),(86,120),(87,119),(88,118),(89,117),(90,116),(91,105),(92,104),(93,103),(94,102),(95,101),(96,110),(97,109),(98,108),(99,107),(100,106),(121,155),(122,154),(123,153),(124,152),(125,151),(126,160),(127,159),(128,158),(129,157),(130,156),(131,145),(132,144),(133,143),(134,142),(135,141),(136,150),(137,149),(138,148),(139,147),(140,146)]])

68 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J4K4L5A5B8A···8H10A···10F10G···10N20A···20H20I···20X
order12222222444444444444558···810···1010···1020···2020···20
size1111442020111122224420202210···102···24···42···24···4

68 irreducible representations

dim1111111112222222222244
type+++++++++++++++
imageC1C2C2C2C2C2C2C2C4D4D5D8C4○D4D10D10D10C4○D8C5⋊D4C4×D5C4○D20D4⋊D5D4.8D10
kernelC4×D4⋊D5C4×C52C8C10.D8D206C4D4⋊Dic5C4×D20C2×D4⋊D5D4×C20D4⋊D5C2×C20C4×D4C20C20C42C4⋊C4C2×D4C10C2×C4D4C4C4C2
# reps1111111182242222488844

Matrix representation of C4×D4⋊D5 in GL4(𝔽41) generated by

9000
0900
00400
00040
,
40000
04000
00137
002140
,
17100
402400
00034
00350
,
04000
13400
0010
0001
,
34100
34700
0010
002140
G:=sub<GL(4,GF(41))| [9,0,0,0,0,9,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,1,21,0,0,37,40],[17,40,0,0,1,24,0,0,0,0,0,35,0,0,34,0],[0,1,0,0,40,34,0,0,0,0,1,0,0,0,0,1],[34,34,0,0,1,7,0,0,0,0,1,21,0,0,0,40] >;

C4×D4⋊D5 in GAP, Magma, Sage, TeX

C_4\times D_4\rtimes D_5
% in TeX

G:=Group("C4xD4:D5");
// GroupNames label

G:=SmallGroup(320,640);
// by ID

G=gap.SmallGroup(320,640);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,58,1684,851,102,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,c*d=d*c,e*c*e=b*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽