Extensions 1→N→G→Q→1 with N=Q8xC20 and Q=C2

Direct product G=NxQ with N=Q8xC20 and Q=C2
dρLabelID
Q8xC2xC20320Q8xC2xC20320,1518

Semidirect products G=N:Q with N=Q8xC20 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC20):1C2 = C4xQ8:D5φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):1C2320,652
(Q8xC20):2C2 = C42.56D10φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):2C2320,653
(Q8xC20):3C2 = Q8:D20φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):3C2320,654
(Q8xC20):4C2 = Q8.1D20φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):4C2320,655
(Q8xC20):5C2 = C42.122D10φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):5C2320,1240
(Q8xC20):6C2 = C4xQ8xD5φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):6C2320,1243
(Q8xC20):7C2 = C42.125D10φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):7C2320,1244
(Q8xC20):8C2 = C4xQ8:2D5φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):8C2320,1245
(Q8xC20):9C2 = C42.126D10φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):9C2320,1246
(Q8xC20):10C2 = Q8xD20φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):10C2320,1247
(Q8xC20):11C2 = Q8:5D20φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):11C2320,1248
(Q8xC20):12C2 = Q8:6D20φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):12C2320,1249
(Q8xC20):13C2 = C42.232D10φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):13C2320,1250
(Q8xC20):14C2 = D20:10Q8φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):14C2320,1251
(Q8xC20):15C2 = C42.131D10φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):15C2320,1252
(Q8xC20):16C2 = C42.132D10φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):16C2320,1253
(Q8xC20):17C2 = C42.133D10φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):17C2320,1254
(Q8xC20):18C2 = C42.134D10φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):18C2320,1255
(Q8xC20):19C2 = C42.135D10φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):19C2320,1256
(Q8xC20):20C2 = C42.136D10φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):20C2320,1257
(Q8xC20):21C2 = SD16xC20φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):21C2320,939
(Q8xC20):22C2 = C5xSD16:C4φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):22C2320,941
(Q8xC20):23C2 = C5xC4:SD16φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):23C2320,961
(Q8xC20):24C2 = C5xQ8.D4φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):24C2320,965
(Q8xC20):25C2 = C5xC23.32C23φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):25C2320,1521
(Q8xC20):26C2 = C5xC23.33C23φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):26C2320,1522
(Q8xC20):27C2 = C5xC23.36C23φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):27C2320,1531
(Q8xC20):28C2 = C5xC23.37C23φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):28C2320,1535
(Q8xC20):29C2 = C5xC22.35C24φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):29C2320,1543
(Q8xC20):30C2 = C5xC22.36C24φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):30C2320,1544
(Q8xC20):31C2 = C5xQ8:5D4φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):31C2320,1550
(Q8xC20):32C2 = C5xD4xQ8φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):32C2320,1551
(Q8xC20):33C2 = C5xQ8:6D4φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):33C2320,1552
(Q8xC20):34C2 = C5xC22.46C24φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):34C2320,1554
(Q8xC20):35C2 = C5xD4:3Q8φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):35C2320,1556
(Q8xC20):36C2 = C5xC22.50C24φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):36C2320,1558
(Q8xC20):37C2 = C5xC22.53C24φ: C2/C1C2 ⊆ Out Q8xC20160(Q8xC20):37C2320,1561
(Q8xC20):38C2 = C4oD4xC20φ: trivial image160(Q8xC20):38C2320,1519

Non-split extensions G=N.Q with N=Q8xC20 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8xC20).1C2 = C20.26Q16φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).1C2320,93
(Q8xC20).2C2 = C20.48SD16φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).2C2320,647
(Q8xC20).3C2 = C20.23Q16φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).3C2320,648
(Q8xC20).4C2 = Q8.3Dic10φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).4C2320,649
(Q8xC20).5C2 = Q8xC5:2C8φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).5C2320,650
(Q8xC20).6C2 = C42.210D10φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).6C2320,651
(Q8xC20).7C2 = C4xC5:Q16φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).7C2320,656
(Q8xC20).8C2 = C42.59D10φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).8C2320,657
(Q8xC20).9C2 = C20:7Q16φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).9C2320,658
(Q8xC20).10C2 = Q8xDic10φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).10C2320,1238
(Q8xC20).11C2 = Dic10:10Q8φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).11C2320,1239
(Q8xC20).12C2 = Q8:5Dic10φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).12C2320,1241
(Q8xC20).13C2 = Q8:6Dic10φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).13C2320,1242
(Q8xC20).14C2 = C5xQ8:C8φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).14C2320,131
(Q8xC20).15C2 = Q16xC20φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).15C2320,940
(Q8xC20).16C2 = C5xQ16:C4φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).16C2320,942
(Q8xC20).17C2 = C5xC8:4Q8φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).17C2320,947
(Q8xC20).18C2 = C5xC4:2Q16φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).18C2320,963
(Q8xC20).19C2 = C5xQ8:Q8φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).19C2320,976
(Q8xC20).20C2 = C5xC4.Q16φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).20C2320,978
(Q8xC20).21C2 = C5xQ8.Q8φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).21C2320,980
(Q8xC20).22C2 = C5xQ8:3Q8φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).22C2320,1559
(Q8xC20).23C2 = C5xQ82φ: C2/C1C2 ⊆ Out Q8xC20320(Q8xC20).23C2320,1560
(Q8xC20).24C2 = Q8xC40φ: trivial image320(Q8xC20).24C2320,946

׿
x
:
Z
F
o
wr
Q
<