Copied to
clipboard

G = Q8.1D20order 320 = 26·5

1st non-split extension by Q8 of D20 acting via D20/C20=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q8.1D20, C42.58D10, (C4×Q8)⋊4D5, (Q8×C20)⋊4C2, C203C827C2, C4.17(C2×D20), (C2×C20).67D4, C20.21(C2×D4), (C5×Q8).18D4, C4⋊C4.254D10, C54(Q8.D4), C4.13(C4○D20), C20.61(C4○D4), C10.93(C4○D8), C10.Q1632C2, (C4×C20).99C22, (C2×Q8).161D10, C4.D20.8C2, D206C4.11C2, C2.16(C207D4), C10.68(C4⋊D4), (C2×C20).348C23, C2.9(C20.C23), (C2×D20).100C22, C10.88(C8.C22), (Q8×C10).196C22, C2.13(D4.8D10), (C2×Dic10).105C22, (C2×C5⋊Q16)⋊7C2, (C2×Q8⋊D5).5C2, (C2×C10).479(C2×D4), (C2×C4).222(C5⋊D4), (C5×C4⋊C4).285C22, (C2×C4).448(C22×D5), C22.156(C2×C5⋊D4), (C2×C52C8).102C22, SmallGroup(320,655)

Series: Derived Chief Lower central Upper central

C1C2×C20 — Q8.1D20
C1C5C10C20C2×C20C2×D20C4.D20 — Q8.1D20
C5C10C2×C20 — Q8.1D20
C1C22C42C4×Q8

Generators and relations for Q8.1D20
 G = < a,b,c,d | a4=c20=1, b2=d2=a2, bab-1=dad-1=a-1, ac=ca, bc=cb, dbd-1=a-1b, dcd-1=a2c-1 >

Subgroups: 454 in 112 conjugacy classes, 43 normal (39 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, D5, C10, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, Q16, C2×D4, C2×Q8, C2×Q8, Dic5, C20, C20, D10, C2×C10, D4⋊C4, Q8⋊C4, C4⋊C8, C4×Q8, C4.4D4, C2×SD16, C2×Q16, C52C8, Dic10, D20, C2×Dic5, C2×C20, C2×C20, C5×Q8, C5×Q8, C22×D5, Q8.D4, C2×C52C8, D10⋊C4, Q8⋊D5, C5⋊Q16, C4×C20, C4×C20, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×D20, Q8×C10, C203C8, D206C4, C10.Q16, C4.D20, C2×Q8⋊D5, C2×C5⋊Q16, Q8×C20, Q8.1D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C4⋊D4, C4○D8, C8.C22, D20, C5⋊D4, C22×D5, Q8.D4, C2×D20, C4○D20, C2×C5⋊D4, C207D4, C20.C23, D4.8D10, Q8.1D20

Smallest permutation representation of Q8.1D20
On 160 points
Generators in S160
(1 81 69 141)(2 82 70 142)(3 83 71 143)(4 84 72 144)(5 85 73 145)(6 86 74 146)(7 87 75 147)(8 88 76 148)(9 89 77 149)(10 90 78 150)(11 91 79 151)(12 92 80 152)(13 93 61 153)(14 94 62 154)(15 95 63 155)(16 96 64 156)(17 97 65 157)(18 98 66 158)(19 99 67 159)(20 100 68 160)(21 55 131 117)(22 56 132 118)(23 57 133 119)(24 58 134 120)(25 59 135 101)(26 60 136 102)(27 41 137 103)(28 42 138 104)(29 43 139 105)(30 44 140 106)(31 45 121 107)(32 46 122 108)(33 47 123 109)(34 48 124 110)(35 49 125 111)(36 50 126 112)(37 51 127 113)(38 52 128 114)(39 53 129 115)(40 54 130 116)
(1 47 69 109)(2 48 70 110)(3 49 71 111)(4 50 72 112)(5 51 73 113)(6 52 74 114)(7 53 75 115)(8 54 76 116)(9 55 77 117)(10 56 78 118)(11 57 79 119)(12 58 80 120)(13 59 61 101)(14 60 62 102)(15 41 63 103)(16 42 64 104)(17 43 65 105)(18 44 66 106)(19 45 67 107)(20 46 68 108)(21 149 131 89)(22 150 132 90)(23 151 133 91)(24 152 134 92)(25 153 135 93)(26 154 136 94)(27 155 137 95)(28 156 138 96)(29 157 139 97)(30 158 140 98)(31 159 121 99)(32 160 122 100)(33 141 123 81)(34 142 124 82)(35 143 125 83)(36 144 126 84)(37 145 127 85)(38 146 128 86)(39 147 129 87)(40 148 130 88)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 68 69 20)(2 19 70 67)(3 66 71 18)(4 17 72 65)(5 64 73 16)(6 15 74 63)(7 62 75 14)(8 13 76 61)(9 80 77 12)(10 11 78 79)(21 58 131 120)(22 119 132 57)(23 56 133 118)(24 117 134 55)(25 54 135 116)(26 115 136 53)(27 52 137 114)(28 113 138 51)(29 50 139 112)(30 111 140 49)(31 48 121 110)(32 109 122 47)(33 46 123 108)(34 107 124 45)(35 44 125 106)(36 105 126 43)(37 42 127 104)(38 103 128 41)(39 60 129 102)(40 101 130 59)(81 100 141 160)(82 159 142 99)(83 98 143 158)(84 157 144 97)(85 96 145 156)(86 155 146 95)(87 94 147 154)(88 153 148 93)(89 92 149 152)(90 151 150 91)

G:=sub<Sym(160)| (1,81,69,141)(2,82,70,142)(3,83,71,143)(4,84,72,144)(5,85,73,145)(6,86,74,146)(7,87,75,147)(8,88,76,148)(9,89,77,149)(10,90,78,150)(11,91,79,151)(12,92,80,152)(13,93,61,153)(14,94,62,154)(15,95,63,155)(16,96,64,156)(17,97,65,157)(18,98,66,158)(19,99,67,159)(20,100,68,160)(21,55,131,117)(22,56,132,118)(23,57,133,119)(24,58,134,120)(25,59,135,101)(26,60,136,102)(27,41,137,103)(28,42,138,104)(29,43,139,105)(30,44,140,106)(31,45,121,107)(32,46,122,108)(33,47,123,109)(34,48,124,110)(35,49,125,111)(36,50,126,112)(37,51,127,113)(38,52,128,114)(39,53,129,115)(40,54,130,116), (1,47,69,109)(2,48,70,110)(3,49,71,111)(4,50,72,112)(5,51,73,113)(6,52,74,114)(7,53,75,115)(8,54,76,116)(9,55,77,117)(10,56,78,118)(11,57,79,119)(12,58,80,120)(13,59,61,101)(14,60,62,102)(15,41,63,103)(16,42,64,104)(17,43,65,105)(18,44,66,106)(19,45,67,107)(20,46,68,108)(21,149,131,89)(22,150,132,90)(23,151,133,91)(24,152,134,92)(25,153,135,93)(26,154,136,94)(27,155,137,95)(28,156,138,96)(29,157,139,97)(30,158,140,98)(31,159,121,99)(32,160,122,100)(33,141,123,81)(34,142,124,82)(35,143,125,83)(36,144,126,84)(37,145,127,85)(38,146,128,86)(39,147,129,87)(40,148,130,88), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,68,69,20)(2,19,70,67)(3,66,71,18)(4,17,72,65)(5,64,73,16)(6,15,74,63)(7,62,75,14)(8,13,76,61)(9,80,77,12)(10,11,78,79)(21,58,131,120)(22,119,132,57)(23,56,133,118)(24,117,134,55)(25,54,135,116)(26,115,136,53)(27,52,137,114)(28,113,138,51)(29,50,139,112)(30,111,140,49)(31,48,121,110)(32,109,122,47)(33,46,123,108)(34,107,124,45)(35,44,125,106)(36,105,126,43)(37,42,127,104)(38,103,128,41)(39,60,129,102)(40,101,130,59)(81,100,141,160)(82,159,142,99)(83,98,143,158)(84,157,144,97)(85,96,145,156)(86,155,146,95)(87,94,147,154)(88,153,148,93)(89,92,149,152)(90,151,150,91)>;

G:=Group( (1,81,69,141)(2,82,70,142)(3,83,71,143)(4,84,72,144)(5,85,73,145)(6,86,74,146)(7,87,75,147)(8,88,76,148)(9,89,77,149)(10,90,78,150)(11,91,79,151)(12,92,80,152)(13,93,61,153)(14,94,62,154)(15,95,63,155)(16,96,64,156)(17,97,65,157)(18,98,66,158)(19,99,67,159)(20,100,68,160)(21,55,131,117)(22,56,132,118)(23,57,133,119)(24,58,134,120)(25,59,135,101)(26,60,136,102)(27,41,137,103)(28,42,138,104)(29,43,139,105)(30,44,140,106)(31,45,121,107)(32,46,122,108)(33,47,123,109)(34,48,124,110)(35,49,125,111)(36,50,126,112)(37,51,127,113)(38,52,128,114)(39,53,129,115)(40,54,130,116), (1,47,69,109)(2,48,70,110)(3,49,71,111)(4,50,72,112)(5,51,73,113)(6,52,74,114)(7,53,75,115)(8,54,76,116)(9,55,77,117)(10,56,78,118)(11,57,79,119)(12,58,80,120)(13,59,61,101)(14,60,62,102)(15,41,63,103)(16,42,64,104)(17,43,65,105)(18,44,66,106)(19,45,67,107)(20,46,68,108)(21,149,131,89)(22,150,132,90)(23,151,133,91)(24,152,134,92)(25,153,135,93)(26,154,136,94)(27,155,137,95)(28,156,138,96)(29,157,139,97)(30,158,140,98)(31,159,121,99)(32,160,122,100)(33,141,123,81)(34,142,124,82)(35,143,125,83)(36,144,126,84)(37,145,127,85)(38,146,128,86)(39,147,129,87)(40,148,130,88), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,68,69,20)(2,19,70,67)(3,66,71,18)(4,17,72,65)(5,64,73,16)(6,15,74,63)(7,62,75,14)(8,13,76,61)(9,80,77,12)(10,11,78,79)(21,58,131,120)(22,119,132,57)(23,56,133,118)(24,117,134,55)(25,54,135,116)(26,115,136,53)(27,52,137,114)(28,113,138,51)(29,50,139,112)(30,111,140,49)(31,48,121,110)(32,109,122,47)(33,46,123,108)(34,107,124,45)(35,44,125,106)(36,105,126,43)(37,42,127,104)(38,103,128,41)(39,60,129,102)(40,101,130,59)(81,100,141,160)(82,159,142,99)(83,98,143,158)(84,157,144,97)(85,96,145,156)(86,155,146,95)(87,94,147,154)(88,153,148,93)(89,92,149,152)(90,151,150,91) );

G=PermutationGroup([[(1,81,69,141),(2,82,70,142),(3,83,71,143),(4,84,72,144),(5,85,73,145),(6,86,74,146),(7,87,75,147),(8,88,76,148),(9,89,77,149),(10,90,78,150),(11,91,79,151),(12,92,80,152),(13,93,61,153),(14,94,62,154),(15,95,63,155),(16,96,64,156),(17,97,65,157),(18,98,66,158),(19,99,67,159),(20,100,68,160),(21,55,131,117),(22,56,132,118),(23,57,133,119),(24,58,134,120),(25,59,135,101),(26,60,136,102),(27,41,137,103),(28,42,138,104),(29,43,139,105),(30,44,140,106),(31,45,121,107),(32,46,122,108),(33,47,123,109),(34,48,124,110),(35,49,125,111),(36,50,126,112),(37,51,127,113),(38,52,128,114),(39,53,129,115),(40,54,130,116)], [(1,47,69,109),(2,48,70,110),(3,49,71,111),(4,50,72,112),(5,51,73,113),(6,52,74,114),(7,53,75,115),(8,54,76,116),(9,55,77,117),(10,56,78,118),(11,57,79,119),(12,58,80,120),(13,59,61,101),(14,60,62,102),(15,41,63,103),(16,42,64,104),(17,43,65,105),(18,44,66,106),(19,45,67,107),(20,46,68,108),(21,149,131,89),(22,150,132,90),(23,151,133,91),(24,152,134,92),(25,153,135,93),(26,154,136,94),(27,155,137,95),(28,156,138,96),(29,157,139,97),(30,158,140,98),(31,159,121,99),(32,160,122,100),(33,141,123,81),(34,142,124,82),(35,143,125,83),(36,144,126,84),(37,145,127,85),(38,146,128,86),(39,147,129,87),(40,148,130,88)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,68,69,20),(2,19,70,67),(3,66,71,18),(4,17,72,65),(5,64,73,16),(6,15,74,63),(7,62,75,14),(8,13,76,61),(9,80,77,12),(10,11,78,79),(21,58,131,120),(22,119,132,57),(23,56,133,118),(24,117,134,55),(25,54,135,116),(26,115,136,53),(27,52,137,114),(28,113,138,51),(29,50,139,112),(30,111,140,49),(31,48,121,110),(32,109,122,47),(33,46,123,108),(34,107,124,45),(35,44,125,106),(36,105,126,43),(37,42,127,104),(38,103,128,41),(39,60,129,102),(40,101,130,59),(81,100,141,160),(82,159,142,99),(83,98,143,158),(84,157,144,97),(85,96,145,156),(86,155,146,95),(87,94,147,154),(88,153,148,93),(89,92,149,152),(90,151,150,91)]])

59 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E···4I4J5A5B8A8B8C8D10A···10F20A···20H20I···20AF
order1222244444···4455888810···1020···2020···20
size11114022224···44022202020202···22···24···4

59 irreducible representations

dim1111111122222222222444
type+++++++++++++++-
imageC1C2C2C2C2C2C2C2D4D4D5C4○D4D10D10D10C4○D8C5⋊D4D20C4○D20C8.C22C20.C23D4.8D10
kernelQ8.1D20C203C8D206C4C10.Q16C4.D20C2×Q8⋊D5C2×C5⋊Q16Q8×C20C2×C20C5×Q8C4×Q8C20C42C4⋊C4C2×Q8C10C2×C4Q8C4C10C2C2
# reps1111111122222224888144

Matrix representation of Q8.1D20 in GL6(𝔽41)

100000
010000
001000
000100
0000139
0000140
,
4000000
0400000
0040000
0004000
00001130
00002630
,
7400000
100000
000100
0040000
000090
000009
,
4070000
010000
000100
001000
000090
0000932

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,39,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,11,26,0,0,0,0,30,30],[7,1,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[40,0,0,0,0,0,7,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,9,9,0,0,0,0,0,32] >;

Q8.1D20 in GAP, Magma, Sage, TeX

Q_8._1D_{20}
% in TeX

G:=Group("Q8.1D20");
// GroupNames label

G:=SmallGroup(320,655);
// by ID

G=gap.SmallGroup(320,655);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,253,344,254,184,1123,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^20=1,b^2=d^2=a^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,b*c=c*b,d*b*d^-1=a^-1*b,d*c*d^-1=a^2*c^-1>;
// generators/relations

׿
×
𝔽