Copied to
clipboard

G = C5×D4×Q8order 320 = 26·5

Direct product of C5, D4 and Q8

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×D4×Q8, C10.1192- 1+4, C42(Q8×C10), C4⋊Q814C10, C2010(C2×Q8), (C4×Q8)⋊12C10, (Q8×C20)⋊32C2, C4.43(D4×C10), C222(Q8×C10), (C4×D4).10C10, (D4×C20).25C2, C20.404(C2×D4), C22⋊Q814C10, (C22×Q8)⋊7C10, C42.44(C2×C10), C10.63(C22×Q8), (C4×C20).285C22, (C2×C20).676C23, (C2×C10).369C24, C10.197(C22×D4), (D4×C10).334C22, C22.43(C23×C10), C23.43(C22×C10), (Q8×C10).275C22, C2.11(C5×2- 1+4), (C22×C20).455C22, (C22×C10).265C23, C2.9(Q8×C2×C10), (C5×C4⋊Q8)⋊35C2, (Q8×C2×C10)⋊19C2, (C2×C10)⋊8(C2×Q8), C2.21(D4×C2×C10), C4⋊C4.32(C2×C10), (C5×C22⋊Q8)⋊41C2, (C2×D4).80(C2×C10), (C2×Q8).62(C2×C10), C22⋊C4.20(C2×C10), (C5×C4⋊C4).397C22, (C2×C4).34(C22×C10), (C22×C4).67(C2×C10), (C5×C22⋊C4).153C22, SmallGroup(320,1551)

Series: Derived Chief Lower central Upper central

C1C22 — C5×D4×Q8
C1C2C22C2×C10C2×C20Q8×C10C5×C22⋊Q8 — C5×D4×Q8
C1C22 — C5×D4×Q8
C1C2×C10 — C5×D4×Q8

Generators and relations for C5×D4×Q8
 G = < a,b,c,d,e | a5=b4=c2=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 378 in 280 conjugacy classes, 182 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, Q8, C23, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C20, C20, C2×C10, C2×C10, C2×C10, C4×D4, C4×Q8, C22⋊Q8, C4⋊Q8, C22×Q8, C2×C20, C2×C20, C2×C20, C5×D4, C5×Q8, C5×Q8, C22×C10, D4×Q8, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C22×C20, D4×C10, Q8×C10, Q8×C10, Q8×C10, D4×C20, Q8×C20, C5×C22⋊Q8, C5×C4⋊Q8, Q8×C2×C10, C5×D4×Q8
Quotients: C1, C2, C22, C5, D4, Q8, C23, C10, C2×D4, C2×Q8, C24, C2×C10, C22×D4, C22×Q8, 2- 1+4, C5×D4, C5×Q8, C22×C10, D4×Q8, D4×C10, Q8×C10, C23×C10, D4×C2×C10, Q8×C2×C10, C5×2- 1+4, C5×D4×Q8

Smallest permutation representation of C5×D4×Q8
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 131 21 126)(2 132 22 127)(3 133 23 128)(4 134 24 129)(5 135 25 130)(6 61 156 56)(7 62 157 57)(8 63 158 58)(9 64 159 59)(10 65 160 60)(11 66 16 71)(12 67 17 72)(13 68 18 73)(14 69 19 74)(15 70 20 75)(26 121 31 116)(27 122 32 117)(28 123 33 118)(29 124 34 119)(30 125 35 120)(36 101 41 96)(37 102 42 97)(38 103 43 98)(39 104 44 99)(40 105 45 100)(46 111 51 106)(47 112 52 107)(48 113 53 108)(49 114 54 109)(50 115 55 110)(76 151 81 146)(77 152 82 147)(78 153 83 148)(79 154 84 149)(80 155 85 150)(86 141 91 136)(87 142 92 137)(88 143 93 138)(89 144 94 139)(90 145 95 140)
(1 126)(2 127)(3 128)(4 129)(5 130)(6 61)(7 62)(8 63)(9 64)(10 65)(11 66)(12 67)(13 68)(14 69)(15 70)(16 71)(17 72)(18 73)(19 74)(20 75)(21 131)(22 132)(23 133)(24 134)(25 135)(26 116)(27 117)(28 118)(29 119)(30 120)(31 121)(32 122)(33 123)(34 124)(35 125)(36 96)(37 97)(38 98)(39 99)(40 100)(41 101)(42 102)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 111)(52 112)(53 113)(54 114)(55 115)(56 156)(57 157)(58 158)(59 159)(60 160)(76 146)(77 147)(78 148)(79 149)(80 150)(81 151)(82 152)(83 153)(84 154)(85 155)(86 136)(87 137)(88 138)(89 139)(90 140)(91 141)(92 142)(93 143)(94 144)(95 145)
(1 46 26 36)(2 47 27 37)(3 48 28 38)(4 49 29 39)(5 50 30 40)(6 151 16 141)(7 152 17 142)(8 153 18 143)(9 154 19 144)(10 155 20 145)(11 136 156 146)(12 137 157 147)(13 138 158 148)(14 139 159 149)(15 140 160 150)(21 51 31 41)(22 52 32 42)(23 53 33 43)(24 54 34 44)(25 55 35 45)(56 76 66 86)(57 77 67 87)(58 78 68 88)(59 79 69 89)(60 80 70 90)(61 81 71 91)(62 82 72 92)(63 83 73 93)(64 84 74 94)(65 85 75 95)(96 126 106 116)(97 127 107 117)(98 128 108 118)(99 129 109 119)(100 130 110 120)(101 131 111 121)(102 132 112 122)(103 133 113 123)(104 134 114 124)(105 135 115 125)
(1 66 26 56)(2 67 27 57)(3 68 28 58)(4 69 29 59)(5 70 30 60)(6 131 16 121)(7 132 17 122)(8 133 18 123)(9 134 19 124)(10 135 20 125)(11 116 156 126)(12 117 157 127)(13 118 158 128)(14 119 159 129)(15 120 160 130)(21 71 31 61)(22 72 32 62)(23 73 33 63)(24 74 34 64)(25 75 35 65)(36 86 46 76)(37 87 47 77)(38 88 48 78)(39 89 49 79)(40 90 50 80)(41 91 51 81)(42 92 52 82)(43 93 53 83)(44 94 54 84)(45 95 55 85)(96 136 106 146)(97 137 107 147)(98 138 108 148)(99 139 109 149)(100 140 110 150)(101 141 111 151)(102 142 112 152)(103 143 113 153)(104 144 114 154)(105 145 115 155)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,131,21,126)(2,132,22,127)(3,133,23,128)(4,134,24,129)(5,135,25,130)(6,61,156,56)(7,62,157,57)(8,63,158,58)(9,64,159,59)(10,65,160,60)(11,66,16,71)(12,67,17,72)(13,68,18,73)(14,69,19,74)(15,70,20,75)(26,121,31,116)(27,122,32,117)(28,123,33,118)(29,124,34,119)(30,125,35,120)(36,101,41,96)(37,102,42,97)(38,103,43,98)(39,104,44,99)(40,105,45,100)(46,111,51,106)(47,112,52,107)(48,113,53,108)(49,114,54,109)(50,115,55,110)(76,151,81,146)(77,152,82,147)(78,153,83,148)(79,154,84,149)(80,155,85,150)(86,141,91,136)(87,142,92,137)(88,143,93,138)(89,144,94,139)(90,145,95,140), (1,126)(2,127)(3,128)(4,129)(5,130)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,75)(21,131)(22,132)(23,133)(24,134)(25,135)(26,116)(27,117)(28,118)(29,119)(30,120)(31,121)(32,122)(33,123)(34,124)(35,125)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,156)(57,157)(58,158)(59,159)(60,160)(76,146)(77,147)(78,148)(79,149)(80,150)(81,151)(82,152)(83,153)(84,154)(85,155)(86,136)(87,137)(88,138)(89,139)(90,140)(91,141)(92,142)(93,143)(94,144)(95,145), (1,46,26,36)(2,47,27,37)(3,48,28,38)(4,49,29,39)(5,50,30,40)(6,151,16,141)(7,152,17,142)(8,153,18,143)(9,154,19,144)(10,155,20,145)(11,136,156,146)(12,137,157,147)(13,138,158,148)(14,139,159,149)(15,140,160,150)(21,51,31,41)(22,52,32,42)(23,53,33,43)(24,54,34,44)(25,55,35,45)(56,76,66,86)(57,77,67,87)(58,78,68,88)(59,79,69,89)(60,80,70,90)(61,81,71,91)(62,82,72,92)(63,83,73,93)(64,84,74,94)(65,85,75,95)(96,126,106,116)(97,127,107,117)(98,128,108,118)(99,129,109,119)(100,130,110,120)(101,131,111,121)(102,132,112,122)(103,133,113,123)(104,134,114,124)(105,135,115,125), (1,66,26,56)(2,67,27,57)(3,68,28,58)(4,69,29,59)(5,70,30,60)(6,131,16,121)(7,132,17,122)(8,133,18,123)(9,134,19,124)(10,135,20,125)(11,116,156,126)(12,117,157,127)(13,118,158,128)(14,119,159,129)(15,120,160,130)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(36,86,46,76)(37,87,47,77)(38,88,48,78)(39,89,49,79)(40,90,50,80)(41,91,51,81)(42,92,52,82)(43,93,53,83)(44,94,54,84)(45,95,55,85)(96,136,106,146)(97,137,107,147)(98,138,108,148)(99,139,109,149)(100,140,110,150)(101,141,111,151)(102,142,112,152)(103,143,113,153)(104,144,114,154)(105,145,115,155)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,131,21,126)(2,132,22,127)(3,133,23,128)(4,134,24,129)(5,135,25,130)(6,61,156,56)(7,62,157,57)(8,63,158,58)(9,64,159,59)(10,65,160,60)(11,66,16,71)(12,67,17,72)(13,68,18,73)(14,69,19,74)(15,70,20,75)(26,121,31,116)(27,122,32,117)(28,123,33,118)(29,124,34,119)(30,125,35,120)(36,101,41,96)(37,102,42,97)(38,103,43,98)(39,104,44,99)(40,105,45,100)(46,111,51,106)(47,112,52,107)(48,113,53,108)(49,114,54,109)(50,115,55,110)(76,151,81,146)(77,152,82,147)(78,153,83,148)(79,154,84,149)(80,155,85,150)(86,141,91,136)(87,142,92,137)(88,143,93,138)(89,144,94,139)(90,145,95,140), (1,126)(2,127)(3,128)(4,129)(5,130)(6,61)(7,62)(8,63)(9,64)(10,65)(11,66)(12,67)(13,68)(14,69)(15,70)(16,71)(17,72)(18,73)(19,74)(20,75)(21,131)(22,132)(23,133)(24,134)(25,135)(26,116)(27,117)(28,118)(29,119)(30,120)(31,121)(32,122)(33,123)(34,124)(35,125)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,111)(52,112)(53,113)(54,114)(55,115)(56,156)(57,157)(58,158)(59,159)(60,160)(76,146)(77,147)(78,148)(79,149)(80,150)(81,151)(82,152)(83,153)(84,154)(85,155)(86,136)(87,137)(88,138)(89,139)(90,140)(91,141)(92,142)(93,143)(94,144)(95,145), (1,46,26,36)(2,47,27,37)(3,48,28,38)(4,49,29,39)(5,50,30,40)(6,151,16,141)(7,152,17,142)(8,153,18,143)(9,154,19,144)(10,155,20,145)(11,136,156,146)(12,137,157,147)(13,138,158,148)(14,139,159,149)(15,140,160,150)(21,51,31,41)(22,52,32,42)(23,53,33,43)(24,54,34,44)(25,55,35,45)(56,76,66,86)(57,77,67,87)(58,78,68,88)(59,79,69,89)(60,80,70,90)(61,81,71,91)(62,82,72,92)(63,83,73,93)(64,84,74,94)(65,85,75,95)(96,126,106,116)(97,127,107,117)(98,128,108,118)(99,129,109,119)(100,130,110,120)(101,131,111,121)(102,132,112,122)(103,133,113,123)(104,134,114,124)(105,135,115,125), (1,66,26,56)(2,67,27,57)(3,68,28,58)(4,69,29,59)(5,70,30,60)(6,131,16,121)(7,132,17,122)(8,133,18,123)(9,134,19,124)(10,135,20,125)(11,116,156,126)(12,117,157,127)(13,118,158,128)(14,119,159,129)(15,120,160,130)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(36,86,46,76)(37,87,47,77)(38,88,48,78)(39,89,49,79)(40,90,50,80)(41,91,51,81)(42,92,52,82)(43,93,53,83)(44,94,54,84)(45,95,55,85)(96,136,106,146)(97,137,107,147)(98,138,108,148)(99,139,109,149)(100,140,110,150)(101,141,111,151)(102,142,112,152)(103,143,113,153)(104,144,114,154)(105,145,115,155) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,131,21,126),(2,132,22,127),(3,133,23,128),(4,134,24,129),(5,135,25,130),(6,61,156,56),(7,62,157,57),(8,63,158,58),(9,64,159,59),(10,65,160,60),(11,66,16,71),(12,67,17,72),(13,68,18,73),(14,69,19,74),(15,70,20,75),(26,121,31,116),(27,122,32,117),(28,123,33,118),(29,124,34,119),(30,125,35,120),(36,101,41,96),(37,102,42,97),(38,103,43,98),(39,104,44,99),(40,105,45,100),(46,111,51,106),(47,112,52,107),(48,113,53,108),(49,114,54,109),(50,115,55,110),(76,151,81,146),(77,152,82,147),(78,153,83,148),(79,154,84,149),(80,155,85,150),(86,141,91,136),(87,142,92,137),(88,143,93,138),(89,144,94,139),(90,145,95,140)], [(1,126),(2,127),(3,128),(4,129),(5,130),(6,61),(7,62),(8,63),(9,64),(10,65),(11,66),(12,67),(13,68),(14,69),(15,70),(16,71),(17,72),(18,73),(19,74),(20,75),(21,131),(22,132),(23,133),(24,134),(25,135),(26,116),(27,117),(28,118),(29,119),(30,120),(31,121),(32,122),(33,123),(34,124),(35,125),(36,96),(37,97),(38,98),(39,99),(40,100),(41,101),(42,102),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,111),(52,112),(53,113),(54,114),(55,115),(56,156),(57,157),(58,158),(59,159),(60,160),(76,146),(77,147),(78,148),(79,149),(80,150),(81,151),(82,152),(83,153),(84,154),(85,155),(86,136),(87,137),(88,138),(89,139),(90,140),(91,141),(92,142),(93,143),(94,144),(95,145)], [(1,46,26,36),(2,47,27,37),(3,48,28,38),(4,49,29,39),(5,50,30,40),(6,151,16,141),(7,152,17,142),(8,153,18,143),(9,154,19,144),(10,155,20,145),(11,136,156,146),(12,137,157,147),(13,138,158,148),(14,139,159,149),(15,140,160,150),(21,51,31,41),(22,52,32,42),(23,53,33,43),(24,54,34,44),(25,55,35,45),(56,76,66,86),(57,77,67,87),(58,78,68,88),(59,79,69,89),(60,80,70,90),(61,81,71,91),(62,82,72,92),(63,83,73,93),(64,84,74,94),(65,85,75,95),(96,126,106,116),(97,127,107,117),(98,128,108,118),(99,129,109,119),(100,130,110,120),(101,131,111,121),(102,132,112,122),(103,133,113,123),(104,134,114,124),(105,135,115,125)], [(1,66,26,56),(2,67,27,57),(3,68,28,58),(4,69,29,59),(5,70,30,60),(6,131,16,121),(7,132,17,122),(8,133,18,123),(9,134,19,124),(10,135,20,125),(11,116,156,126),(12,117,157,127),(13,118,158,128),(14,119,159,129),(15,120,160,130),(21,71,31,61),(22,72,32,62),(23,73,33,63),(24,74,34,64),(25,75,35,65),(36,86,46,76),(37,87,47,77),(38,88,48,78),(39,89,49,79),(40,90,50,80),(41,91,51,81),(42,92,52,82),(43,93,53,83),(44,94,54,84),(45,95,55,85),(96,136,106,146),(97,137,107,147),(98,138,108,148),(99,139,109,149),(100,140,110,150),(101,141,111,151),(102,142,112,152),(103,143,113,153),(104,144,114,154),(105,145,115,155)]])

125 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4H4I···4Q5A5B5C5D10A···10L10M···10AB20A···20AF20AG···20BP
order122222224···44···4555510···1010···1020···2020···20
size111122222···24···411111···12···22···24···4

125 irreducible representations

dim111111111111222244
type++++++-+-
imageC1C2C2C2C2C2C5C10C10C10C10C10Q8D4C5×Q8C5×D42- 1+4C5×2- 1+4
kernelC5×D4×Q8D4×C20Q8×C20C5×C22⋊Q8C5×C4⋊Q8Q8×C2×C10D4×Q8C4×D4C4×Q8C22⋊Q8C4⋊Q8C22×Q8C5×D4C5×Q8D4Q8C10C2
# reps13163241242412844161614

Matrix representation of C5×D4×Q8 in GL4(𝔽41) generated by

1000
0100
00370
00037
,
40200
40100
0010
0001
,
40200
0100
0010
0001
,
40000
04000
0092
00032
,
40000
04000
0076
001934
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,37,0,0,0,0,37],[40,40,0,0,2,1,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,2,1,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,40,0,0,0,0,9,0,0,0,2,32],[40,0,0,0,0,40,0,0,0,0,7,19,0,0,6,34] >;

C5×D4×Q8 in GAP, Magma, Sage, TeX

C_5\times D_4\times Q_8
% in TeX

G:=Group("C5xD4xQ8");
// GroupNames label

G:=SmallGroup(320,1551);
// by ID

G=gap.SmallGroup(320,1551);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,560,1149,568,3446,1242,304]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^4=c^2=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽