Copied to
clipboard

G = C5×Q85D4order 320 = 26·5

Direct product of C5 and Q85D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C5×Q85D4, C10.1182- 1+4, Q85(C5×D4), (C5×Q8)⋊23D4, (C4×D4)⋊17C10, (D4×C20)⋊46C2, (Q8×C20)⋊31C2, (C4×Q8)⋊11C10, C4.42(D4×C10), C4⋊D413C10, C20.403(C2×D4), C22⋊Q813C10, (C22×Q8)⋊6C10, C4.4D411C10, C42.43(C2×C10), (C2×C10).368C24, (C4×C20).284C22, (C2×C20).714C23, C10.196(C22×D4), (D4×C10).322C22, C22.42(C23×C10), C23.42(C22×C10), (Q8×C10).274C22, C2.10(C5×2- 1+4), (C22×C10).100C23, (C22×C20).454C22, (Q8×C2×C10)⋊18C2, C2.20(D4×C2×C10), (C2×C4○D4)⋊8C10, C223(C5×C4○D4), (C10×C4○D4)⋊24C2, (C5×C4⋊D4)⋊40C2, C4⋊C4.71(C2×C10), C2.22(C10×C4○D4), (C5×C22⋊Q8)⋊40C2, (C2×C10)⋊17(C4○D4), (C2×D4).67(C2×C10), C10.241(C2×C4○D4), (C5×C4.4D4)⋊31C2, (C2×Q8).61(C2×C10), C22⋊C4.19(C2×C10), (C5×C4⋊C4).396C22, (C22×C4).66(C2×C10), (C2×C4).60(C22×C10), (C5×C22⋊C4).88C22, SmallGroup(320,1550)

Series: Derived Chief Lower central Upper central

C1C22 — C5×Q85D4
C1C2C22C2×C10C22×C10D4×C10C5×C4⋊D4 — C5×Q85D4
C1C22 — C5×Q85D4
C1C2×C10 — C5×Q85D4

Generators and relations for C5×Q85D4
 G = < a,b,c,d,e | a5=b4=d4=e2=1, c2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, dcd-1=ece=b2c, ede=d-1 >

Subgroups: 426 in 290 conjugacy classes, 166 normal (28 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, Q8, C23, C23, C10, C10, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C20, C20, C2×C10, C2×C10, C2×C10, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C4.4D4, C22×Q8, C2×C4○D4, C2×C20, C2×C20, C2×C20, C5×D4, C5×Q8, C5×Q8, C22×C10, C22×C10, Q85D4, C4×C20, C5×C22⋊C4, C5×C22⋊C4, C5×C4⋊C4, C22×C20, D4×C10, Q8×C10, Q8×C10, Q8×C10, C5×C4○D4, D4×C20, Q8×C20, C5×C4⋊D4, C5×C22⋊Q8, C5×C4.4D4, Q8×C2×C10, C10×C4○D4, C5×Q85D4
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C4○D4, C24, C2×C10, C22×D4, C2×C4○D4, 2- 1+4, C5×D4, C22×C10, Q85D4, D4×C10, C5×C4○D4, C23×C10, D4×C2×C10, C10×C4○D4, C5×2- 1+4, C5×Q85D4

Smallest permutation representation of C5×Q85D4
On 160 points
Generators in S160
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)(121 122 123 124 125)(126 127 128 129 130)(131 132 133 134 135)(136 137 138 139 140)(141 142 143 144 145)(146 147 148 149 150)(151 152 153 154 155)(156 157 158 159 160)
(1 51 26 41)(2 52 27 42)(3 53 28 43)(4 54 29 44)(5 55 30 45)(6 146 16 136)(7 147 17 137)(8 148 18 138)(9 149 19 139)(10 150 20 140)(11 141 156 151)(12 142 157 152)(13 143 158 153)(14 144 159 154)(15 145 160 155)(21 46 31 36)(22 47 32 37)(23 48 33 38)(24 49 34 39)(25 50 35 40)(56 91 66 81)(57 92 67 82)(58 93 68 83)(59 94 69 84)(60 95 70 85)(61 86 71 76)(62 87 72 77)(63 88 73 78)(64 89 74 79)(65 90 75 80)(96 121 106 131)(97 122 107 132)(98 123 108 133)(99 124 109 134)(100 125 110 135)(101 116 111 126)(102 117 112 127)(103 118 113 128)(104 119 114 129)(105 120 115 130)
(1 111 26 101)(2 112 27 102)(3 113 28 103)(4 114 29 104)(5 115 30 105)(6 76 16 86)(7 77 17 87)(8 78 18 88)(9 79 19 89)(10 80 20 90)(11 91 156 81)(12 92 157 82)(13 93 158 83)(14 94 159 84)(15 95 160 85)(21 106 31 96)(22 107 32 97)(23 108 33 98)(24 109 34 99)(25 110 35 100)(36 131 46 121)(37 132 47 122)(38 133 48 123)(39 134 49 124)(40 135 50 125)(41 126 51 116)(42 127 52 117)(43 128 53 118)(44 129 54 119)(45 130 55 120)(56 151 66 141)(57 152 67 142)(58 153 68 143)(59 154 69 144)(60 155 70 145)(61 146 71 136)(62 147 72 137)(63 148 73 138)(64 149 74 139)(65 150 75 140)
(1 136 21 141)(2 137 22 142)(3 138 23 143)(4 139 24 144)(5 140 25 145)(6 46 156 51)(7 47 157 52)(8 48 158 53)(9 49 159 54)(10 50 160 55)(11 41 16 36)(12 42 17 37)(13 43 18 38)(14 44 19 39)(15 45 20 40)(26 146 31 151)(27 147 32 152)(28 148 33 153)(29 149 34 154)(30 150 35 155)(56 101 61 96)(57 102 62 97)(58 103 63 98)(59 104 64 99)(60 105 65 100)(66 111 71 106)(67 112 72 107)(68 113 73 108)(69 114 74 109)(70 115 75 110)(76 131 81 126)(77 132 82 127)(78 133 83 128)(79 134 84 129)(80 135 85 130)(86 121 91 116)(87 122 92 117)(88 123 93 118)(89 124 94 119)(90 125 95 120)
(1 96)(2 97)(3 98)(4 99)(5 100)(6 86)(7 87)(8 88)(9 89)(10 90)(11 81)(12 82)(13 83)(14 84)(15 85)(16 76)(17 77)(18 78)(19 79)(20 80)(21 101)(22 102)(23 103)(24 104)(25 105)(26 106)(27 107)(28 108)(29 109)(30 110)(31 111)(32 112)(33 113)(34 114)(35 115)(36 126)(37 127)(38 128)(39 129)(40 130)(41 131)(42 132)(43 133)(44 134)(45 135)(46 116)(47 117)(48 118)(49 119)(50 120)(51 121)(52 122)(53 123)(54 124)(55 125)(56 141)(57 142)(58 143)(59 144)(60 145)(61 136)(62 137)(63 138)(64 139)(65 140)(66 151)(67 152)(68 153)(69 154)(70 155)(71 146)(72 147)(73 148)(74 149)(75 150)(91 156)(92 157)(93 158)(94 159)(95 160)

G:=sub<Sym(160)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,51,26,41)(2,52,27,42)(3,53,28,43)(4,54,29,44)(5,55,30,45)(6,146,16,136)(7,147,17,137)(8,148,18,138)(9,149,19,139)(10,150,20,140)(11,141,156,151)(12,142,157,152)(13,143,158,153)(14,144,159,154)(15,145,160,155)(21,46,31,36)(22,47,32,37)(23,48,33,38)(24,49,34,39)(25,50,35,40)(56,91,66,81)(57,92,67,82)(58,93,68,83)(59,94,69,84)(60,95,70,85)(61,86,71,76)(62,87,72,77)(63,88,73,78)(64,89,74,79)(65,90,75,80)(96,121,106,131)(97,122,107,132)(98,123,108,133)(99,124,109,134)(100,125,110,135)(101,116,111,126)(102,117,112,127)(103,118,113,128)(104,119,114,129)(105,120,115,130), (1,111,26,101)(2,112,27,102)(3,113,28,103)(4,114,29,104)(5,115,30,105)(6,76,16,86)(7,77,17,87)(8,78,18,88)(9,79,19,89)(10,80,20,90)(11,91,156,81)(12,92,157,82)(13,93,158,83)(14,94,159,84)(15,95,160,85)(21,106,31,96)(22,107,32,97)(23,108,33,98)(24,109,34,99)(25,110,35,100)(36,131,46,121)(37,132,47,122)(38,133,48,123)(39,134,49,124)(40,135,50,125)(41,126,51,116)(42,127,52,117)(43,128,53,118)(44,129,54,119)(45,130,55,120)(56,151,66,141)(57,152,67,142)(58,153,68,143)(59,154,69,144)(60,155,70,145)(61,146,71,136)(62,147,72,137)(63,148,73,138)(64,149,74,139)(65,150,75,140), (1,136,21,141)(2,137,22,142)(3,138,23,143)(4,139,24,144)(5,140,25,145)(6,46,156,51)(7,47,157,52)(8,48,158,53)(9,49,159,54)(10,50,160,55)(11,41,16,36)(12,42,17,37)(13,43,18,38)(14,44,19,39)(15,45,20,40)(26,146,31,151)(27,147,32,152)(28,148,33,153)(29,149,34,154)(30,150,35,155)(56,101,61,96)(57,102,62,97)(58,103,63,98)(59,104,64,99)(60,105,65,100)(66,111,71,106)(67,112,72,107)(68,113,73,108)(69,114,74,109)(70,115,75,110)(76,131,81,126)(77,132,82,127)(78,133,83,128)(79,134,84,129)(80,135,85,130)(86,121,91,116)(87,122,92,117)(88,123,93,118)(89,124,94,119)(90,125,95,120), (1,96)(2,97)(3,98)(4,99)(5,100)(6,86)(7,87)(8,88)(9,89)(10,90)(11,81)(12,82)(13,83)(14,84)(15,85)(16,76)(17,77)(18,78)(19,79)(20,80)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,126)(37,127)(38,128)(39,129)(40,130)(41,131)(42,132)(43,133)(44,134)(45,135)(46,116)(47,117)(48,118)(49,119)(50,120)(51,121)(52,122)(53,123)(54,124)(55,125)(56,141)(57,142)(58,143)(59,144)(60,145)(61,136)(62,137)(63,138)(64,139)(65,140)(66,151)(67,152)(68,153)(69,154)(70,155)(71,146)(72,147)(73,148)(74,149)(75,150)(91,156)(92,157)(93,158)(94,159)(95,160)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120)(121,122,123,124,125)(126,127,128,129,130)(131,132,133,134,135)(136,137,138,139,140)(141,142,143,144,145)(146,147,148,149,150)(151,152,153,154,155)(156,157,158,159,160), (1,51,26,41)(2,52,27,42)(3,53,28,43)(4,54,29,44)(5,55,30,45)(6,146,16,136)(7,147,17,137)(8,148,18,138)(9,149,19,139)(10,150,20,140)(11,141,156,151)(12,142,157,152)(13,143,158,153)(14,144,159,154)(15,145,160,155)(21,46,31,36)(22,47,32,37)(23,48,33,38)(24,49,34,39)(25,50,35,40)(56,91,66,81)(57,92,67,82)(58,93,68,83)(59,94,69,84)(60,95,70,85)(61,86,71,76)(62,87,72,77)(63,88,73,78)(64,89,74,79)(65,90,75,80)(96,121,106,131)(97,122,107,132)(98,123,108,133)(99,124,109,134)(100,125,110,135)(101,116,111,126)(102,117,112,127)(103,118,113,128)(104,119,114,129)(105,120,115,130), (1,111,26,101)(2,112,27,102)(3,113,28,103)(4,114,29,104)(5,115,30,105)(6,76,16,86)(7,77,17,87)(8,78,18,88)(9,79,19,89)(10,80,20,90)(11,91,156,81)(12,92,157,82)(13,93,158,83)(14,94,159,84)(15,95,160,85)(21,106,31,96)(22,107,32,97)(23,108,33,98)(24,109,34,99)(25,110,35,100)(36,131,46,121)(37,132,47,122)(38,133,48,123)(39,134,49,124)(40,135,50,125)(41,126,51,116)(42,127,52,117)(43,128,53,118)(44,129,54,119)(45,130,55,120)(56,151,66,141)(57,152,67,142)(58,153,68,143)(59,154,69,144)(60,155,70,145)(61,146,71,136)(62,147,72,137)(63,148,73,138)(64,149,74,139)(65,150,75,140), (1,136,21,141)(2,137,22,142)(3,138,23,143)(4,139,24,144)(5,140,25,145)(6,46,156,51)(7,47,157,52)(8,48,158,53)(9,49,159,54)(10,50,160,55)(11,41,16,36)(12,42,17,37)(13,43,18,38)(14,44,19,39)(15,45,20,40)(26,146,31,151)(27,147,32,152)(28,148,33,153)(29,149,34,154)(30,150,35,155)(56,101,61,96)(57,102,62,97)(58,103,63,98)(59,104,64,99)(60,105,65,100)(66,111,71,106)(67,112,72,107)(68,113,73,108)(69,114,74,109)(70,115,75,110)(76,131,81,126)(77,132,82,127)(78,133,83,128)(79,134,84,129)(80,135,85,130)(86,121,91,116)(87,122,92,117)(88,123,93,118)(89,124,94,119)(90,125,95,120), (1,96)(2,97)(3,98)(4,99)(5,100)(6,86)(7,87)(8,88)(9,89)(10,90)(11,81)(12,82)(13,83)(14,84)(15,85)(16,76)(17,77)(18,78)(19,79)(20,80)(21,101)(22,102)(23,103)(24,104)(25,105)(26,106)(27,107)(28,108)(29,109)(30,110)(31,111)(32,112)(33,113)(34,114)(35,115)(36,126)(37,127)(38,128)(39,129)(40,130)(41,131)(42,132)(43,133)(44,134)(45,135)(46,116)(47,117)(48,118)(49,119)(50,120)(51,121)(52,122)(53,123)(54,124)(55,125)(56,141)(57,142)(58,143)(59,144)(60,145)(61,136)(62,137)(63,138)(64,139)(65,140)(66,151)(67,152)(68,153)(69,154)(70,155)(71,146)(72,147)(73,148)(74,149)(75,150)(91,156)(92,157)(93,158)(94,159)(95,160) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120),(121,122,123,124,125),(126,127,128,129,130),(131,132,133,134,135),(136,137,138,139,140),(141,142,143,144,145),(146,147,148,149,150),(151,152,153,154,155),(156,157,158,159,160)], [(1,51,26,41),(2,52,27,42),(3,53,28,43),(4,54,29,44),(5,55,30,45),(6,146,16,136),(7,147,17,137),(8,148,18,138),(9,149,19,139),(10,150,20,140),(11,141,156,151),(12,142,157,152),(13,143,158,153),(14,144,159,154),(15,145,160,155),(21,46,31,36),(22,47,32,37),(23,48,33,38),(24,49,34,39),(25,50,35,40),(56,91,66,81),(57,92,67,82),(58,93,68,83),(59,94,69,84),(60,95,70,85),(61,86,71,76),(62,87,72,77),(63,88,73,78),(64,89,74,79),(65,90,75,80),(96,121,106,131),(97,122,107,132),(98,123,108,133),(99,124,109,134),(100,125,110,135),(101,116,111,126),(102,117,112,127),(103,118,113,128),(104,119,114,129),(105,120,115,130)], [(1,111,26,101),(2,112,27,102),(3,113,28,103),(4,114,29,104),(5,115,30,105),(6,76,16,86),(7,77,17,87),(8,78,18,88),(9,79,19,89),(10,80,20,90),(11,91,156,81),(12,92,157,82),(13,93,158,83),(14,94,159,84),(15,95,160,85),(21,106,31,96),(22,107,32,97),(23,108,33,98),(24,109,34,99),(25,110,35,100),(36,131,46,121),(37,132,47,122),(38,133,48,123),(39,134,49,124),(40,135,50,125),(41,126,51,116),(42,127,52,117),(43,128,53,118),(44,129,54,119),(45,130,55,120),(56,151,66,141),(57,152,67,142),(58,153,68,143),(59,154,69,144),(60,155,70,145),(61,146,71,136),(62,147,72,137),(63,148,73,138),(64,149,74,139),(65,150,75,140)], [(1,136,21,141),(2,137,22,142),(3,138,23,143),(4,139,24,144),(5,140,25,145),(6,46,156,51),(7,47,157,52),(8,48,158,53),(9,49,159,54),(10,50,160,55),(11,41,16,36),(12,42,17,37),(13,43,18,38),(14,44,19,39),(15,45,20,40),(26,146,31,151),(27,147,32,152),(28,148,33,153),(29,149,34,154),(30,150,35,155),(56,101,61,96),(57,102,62,97),(58,103,63,98),(59,104,64,99),(60,105,65,100),(66,111,71,106),(67,112,72,107),(68,113,73,108),(69,114,74,109),(70,115,75,110),(76,131,81,126),(77,132,82,127),(78,133,83,128),(79,134,84,129),(80,135,85,130),(86,121,91,116),(87,122,92,117),(88,123,93,118),(89,124,94,119),(90,125,95,120)], [(1,96),(2,97),(3,98),(4,99),(5,100),(6,86),(7,87),(8,88),(9,89),(10,90),(11,81),(12,82),(13,83),(14,84),(15,85),(16,76),(17,77),(18,78),(19,79),(20,80),(21,101),(22,102),(23,103),(24,104),(25,105),(26,106),(27,107),(28,108),(29,109),(30,110),(31,111),(32,112),(33,113),(34,114),(35,115),(36,126),(37,127),(38,128),(39,129),(40,130),(41,131),(42,132),(43,133),(44,134),(45,135),(46,116),(47,117),(48,118),(49,119),(50,120),(51,121),(52,122),(53,123),(54,124),(55,125),(56,141),(57,142),(58,143),(59,144),(60,145),(61,136),(62,137),(63,138),(64,139),(65,140),(66,151),(67,152),(68,153),(69,154),(70,155),(71,146),(72,147),(73,148),(74,149),(75,150),(91,156),(92,157),(93,158),(94,159),(95,160)]])

125 conjugacy classes

class 1 2A2B2C2D2E2F2G2H4A···4J4K···4P5A5B5C5D10A···10L10M···10T10U···10AF20A···20AN20AO···20BL
order1222222224···44···4555510···1010···1010···1020···2020···20
size1111224442···24···411111···12···24···42···24···4

125 irreducible representations

dim1111111111111111222244
type+++++++++-
imageC1C2C2C2C2C2C2C2C5C10C10C10C10C10C10C10D4C4○D4C5×D4C5×C4○D42- 1+4C5×2- 1+4
kernelC5×Q85D4D4×C20Q8×C20C5×C4⋊D4C5×C22⋊Q8C5×C4.4D4Q8×C2×C10C10×C4○D4Q85D4C4×D4C4×Q8C4⋊D4C22⋊Q8C4.4D4C22×Q8C2×C4○D4C5×Q8C2×C10Q8C22C10C2
# reps1313331141241212124444161614

Matrix representation of C5×Q85D4 in GL4(𝔽41) generated by

1000
0100
00160
00016
,
1000
0100
002939
001112
,
40000
04000
001523
00826
,
40200
40100
001523
001726
,
1000
14000
001523
001726
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,16,0,0,0,0,16],[1,0,0,0,0,1,0,0,0,0,29,11,0,0,39,12],[40,0,0,0,0,40,0,0,0,0,15,8,0,0,23,26],[40,40,0,0,2,1,0,0,0,0,15,17,0,0,23,26],[1,1,0,0,0,40,0,0,0,0,15,17,0,0,23,26] >;

C5×Q85D4 in GAP, Magma, Sage, TeX

C_5\times Q_8\rtimes_5D_4
% in TeX

G:=Group("C5xQ8:5D4");
// GroupNames label

G:=SmallGroup(320,1550);
// by ID

G=gap.SmallGroup(320,1550);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,568,3446,1242,304]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^4=d^4=e^2=1,c^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽