Extensions 1→N→G→Q→1 with N=C2xC4 and Q=C2xDic5

Direct product G=NxQ with N=C2xC4 and Q=C2xDic5
dρLabelID
C22xC4xDic5320C2^2xC4xDic5320,1454

Semidirect products G=N:Q with N=C2xC4 and Q=C2xDic5
extensionφ:Q→Aut NdρLabelID
(C2xC4):1(C2xDic5) = C2xC23:Dic5φ: C2xDic5/C10C4 ⊆ Aut C2xC480(C2xC4):1(C2xDic5)320,846
(C2xC4):2(C2xDic5) = C24.47D10φ: C2xDic5/C10C22 ⊆ Aut C2xC4160(C2xC4):2(C2xDic5)320,577
(C2xC4):3(C2xDic5) = C24.18D10φ: C2xDic5/C10C22 ⊆ Aut C2xC4160(C2xC4):3(C2xDic5)320,847
(C2xC4):4(C2xDic5) = C24.38D10φ: C2xDic5/C10C22 ⊆ Aut C2xC480(C2xC4):4(C2xDic5)320,1470
(C2xC4):5(C2xDic5) = C10.1062- 1+4φ: C2xDic5/C10C22 ⊆ Aut C2xC4160(C2xC4):5(C2xDic5)320,1499
(C2xC4):6(C2xDic5) = C22:C4xDic5φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4):6(C2xDic5)320,568
(C2xC4):7(C2xDic5) = C2xD4xDic5φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4):7(C2xDic5)320,1467
(C2xC4):8(C2xDic5) = C4oD4xDic5φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4):8(C2xDic5)320,1498
(C2xC4):9(C2xDic5) = C2xC10.10C42φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4320(C2xC4):9(C2xDic5)320,835
(C2xC4):10(C2xDic5) = C22xC4:Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4320(C2xC4):10(C2xDic5)320,1457
(C2xC4):11(C2xDic5) = C2xC23.21D10φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4160(C2xC4):11(C2xDic5)320,1458

Non-split extensions G=N.Q with N=C2xC4 and Q=C2xDic5
extensionφ:Q→Aut NdρLabelID
(C2xC4).1(C2xDic5) = C42:Dic5φ: C2xDic5/C10C4 ⊆ Aut C2xC4804(C2xC4).1(C2xDic5)320,99
(C2xC4).2(C2xDic5) = C42.Dic5φ: C2xDic5/C10C4 ⊆ Aut C2xC4804(C2xC4).2(C2xDic5)320,100
(C2xC4).3(C2xDic5) = C42:3Dic5φ: C2xDic5/C10C4 ⊆ Aut C2xC4404(C2xC4).3(C2xDic5)320,103
(C2xC4).4(C2xDic5) = C42.3Dic5φ: C2xDic5/C10C4 ⊆ Aut C2xC4804(C2xC4).4(C2xDic5)320,106
(C2xC4).5(C2xDic5) = (D4xC10).29C4φ: C2xDic5/C10C4 ⊆ Aut C2xC4804(C2xC4).5(C2xDic5)320,864
(C2xC4).6(C2xDic5) = (D4xC10):22C4φ: C2xDic5/C10C4 ⊆ Aut C2xC4804(C2xC4).6(C2xDic5)320,867
(C2xC4).7(C2xDic5) = C4:C4:Dic5φ: C2xDic5/C10C22 ⊆ Aut C2xC480(C2xC4).7(C2xDic5)320,95
(C2xC4).8(C2xDic5) = C10.29C4wrC2φ: C2xDic5/C10C22 ⊆ Aut C2xC480(C2xC4).8(C2xDic5)320,96
(C2xC4).9(C2xDic5) = C42.7D10φ: C2xDic5/C10C22 ⊆ Aut C2xC4160(C2xC4).9(C2xDic5)320,98
(C2xC4).10(C2xDic5) = C42.8D10φ: C2xDic5/C10C22 ⊆ Aut C2xC4320(C2xC4).10(C2xDic5)320,101
(C2xC4).11(C2xDic5) = C20.9D8φ: C2xDic5/C10C22 ⊆ Aut C2xC4160(C2xC4).11(C2xDic5)320,102
(C2xC4).12(C2xDic5) = C20.5Q16φ: C2xDic5/C10C22 ⊆ Aut C2xC4320(C2xC4).12(C2xDic5)320,104
(C2xC4).13(C2xDic5) = C20.10D8φ: C2xDic5/C10C22 ⊆ Aut C2xC4320(C2xC4).13(C2xDic5)320,105
(C2xC4).14(C2xDic5) = M4(2):Dic5φ: C2xDic5/C10C22 ⊆ Aut C2xC4160(C2xC4).14(C2xDic5)320,112
(C2xC4).15(C2xDic5) = M4(2):4Dic5φ: C2xDic5/C10C22 ⊆ Aut C2xC4804(C2xC4).15(C2xDic5)320,117
(C2xC4).16(C2xDic5) = C24.8D10φ: C2xDic5/C10C22 ⊆ Aut C2xC4160(C2xC4).16(C2xDic5)320,578
(C2xC4).17(C2xDic5) = C4:C4:5Dic5φ: C2xDic5/C10C22 ⊆ Aut C2xC4320(C2xC4).17(C2xDic5)320,608
(C2xC4).18(C2xDic5) = C20:6(C4:C4)φ: C2xDic5/C10C22 ⊆ Aut C2xC4320(C2xC4).18(C2xDic5)320,612
(C2xC4).19(C2xDic5) = C42.187D10φ: C2xDic5/C10C22 ⊆ Aut C2xC4160(C2xC4).19(C2xDic5)320,627
(C2xC4).20(C2xDic5) = C20:7M4(2)φ: C2xDic5/C10C22 ⊆ Aut C2xC4160(C2xC4).20(C2xDic5)320,639
(C2xC4).21(C2xDic5) = C23.47D20φ: C2xDic5/C10C22 ⊆ Aut C2xC4160(C2xC4).21(C2xDic5)320,748
(C2xC4).22(C2xDic5) = M4(2).Dic5φ: C2xDic5/C10C22 ⊆ Aut C2xC4804(C2xC4).22(C2xDic5)320,752
(C2xC4).23(C2xDic5) = (D4xC10):18C4φ: C2xDic5/C10C22 ⊆ Aut C2xC480(C2xC4).23(C2xDic5)320,842
(C2xC4).24(C2xDic5) = C2xC20.D4φ: C2xDic5/C10C22 ⊆ Aut C2xC480(C2xC4).24(C2xDic5)320,843
(C2xC4).25(C2xDic5) = (Q8xC10):16C4φ: C2xDic5/C10C22 ⊆ Aut C2xC4160(C2xC4).25(C2xDic5)320,852
(C2xC4).26(C2xDic5) = C2xC20.10D4φ: C2xDic5/C10C22 ⊆ Aut C2xC4160(C2xC4).26(C2xDic5)320,853
(C2xC4).27(C2xDic5) = (Q8xC10):17C4φ: C2xDic5/C10C22 ⊆ Aut C2xC4320(C2xC4).27(C2xDic5)320,857
(C2xC4).28(C2xDic5) = C4oD4:Dic5φ: C2xDic5/C10C22 ⊆ Aut C2xC4160(C2xC4).28(C2xDic5)320,859
(C2xC4).29(C2xDic5) = (D4xC10):21C4φ: C2xDic5/C10C22 ⊆ Aut C2xC4804(C2xC4).29(C2xDic5)320,863
(C2xC4).30(C2xDic5) = C10.422- 1+4φ: C2xDic5/C10C22 ⊆ Aut C2xC4160(C2xC4).30(C2xDic5)320,1484
(C2xC4).31(C2xDic5) = C20.76C24φ: C2xDic5/C10C22 ⊆ Aut C2xC4804(C2xC4).31(C2xDic5)320,1491
(C2xC4).32(C2xDic5) = C4:C4xDic5φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4320(C2xC4).32(C2xDic5)320,602
(C2xC4).33(C2xDic5) = D4xC5:2C8φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4).33(C2xDic5)320,637
(C2xC4).34(C2xDic5) = C42.47D10φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4).34(C2xDic5)320,638
(C2xC4).35(C2xDic5) = C20.31C42φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4320(C2xC4).35(C2xDic5)320,87
(C2xC4).36(C2xDic5) = C20.32C42φ: C2xDic5/Dic5C2 ⊆ Aut C2xC480(C2xC4).36(C2xDic5)320,90
(C2xC4).37(C2xDic5) = C20.57D8φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4).37(C2xDic5)320,92
(C2xC4).38(C2xDic5) = C20.26Q16φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4320(C2xC4).38(C2xDic5)320,93
(C2xC4).39(C2xDic5) = C20.33C42φ: C2xDic5/Dic5C2 ⊆ Aut C2xC480(C2xC4).39(C2xDic5)320,113
(C2xC4).40(C2xDic5) = C20.34C42φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4).40(C2xDic5)320,116
(C2xC4).41(C2xDic5) = C40.92D4φ: C2xDic5/Dic5C2 ⊆ Aut C2xC41604(C2xC4).41(C2xDic5)320,119
(C2xC4).42(C2xDic5) = C20.35C42φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4).42(C2xDic5)320,624
(C2xC4).43(C2xDic5) = C42.43D10φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4).43(C2xDic5)320,626
(C2xC4).44(C2xDic5) = Q8xC5:2C8φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4320(C2xC4).44(C2xDic5)320,650
(C2xC4).45(C2xDic5) = C42.210D10φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4320(C2xC4).45(C2xDic5)320,651
(C2xC4).46(C2xDic5) = M4(2)xDic5φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4).46(C2xDic5)320,744
(C2xC4).47(C2xDic5) = C20.37C42φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4).47(C2xDic5)320,749
(C2xC4).48(C2xDic5) = C40.70C23φ: C2xDic5/Dic5C2 ⊆ Aut C2xC41604(C2xC4).48(C2xDic5)320,767
(C2xC4).49(C2xDic5) = C2xD4:Dic5φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4).49(C2xDic5)320,841
(C2xC4).50(C2xDic5) = C24.19D10φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4).50(C2xDic5)320,848
(C2xC4).51(C2xDic5) = C2xQ8:Dic5φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4320(C2xC4).51(C2xDic5)320,851
(C2xC4).52(C2xDic5) = C20.(C2xD4)φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4).52(C2xDic5)320,860
(C2xC4).53(C2xDic5) = (D4xC10).24C4φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4).53(C2xDic5)320,861
(C2xC4).54(C2xDic5) = C2xD4:2Dic5φ: C2xDic5/Dic5C2 ⊆ Aut C2xC480(C2xC4).54(C2xDic5)320,862
(C2xC4).55(C2xDic5) = C2xQ8xDic5φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4320(C2xC4).55(C2xDic5)320,1483
(C2xC4).56(C2xDic5) = C2xD4.Dic5φ: C2xDic5/Dic5C2 ⊆ Aut C2xC4160(C2xC4).56(C2xDic5)320,1490
(C2xC4).57(C2xDic5) = C4xC4.Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4160(C2xC4).57(C2xDic5)320,549
(C2xC4).58(C2xDic5) = C20:13M4(2)φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4160(C2xC4).58(C2xDic5)320,551
(C2xC4).59(C2xDic5) = C42.7Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4160(C2xC4).59(C2xDic5)320,553
(C2xC4).60(C2xDic5) = C42:4Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4320(C2xC4).60(C2xDic5)320,559
(C2xC4).61(C2xDic5) = C4xC4:Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4320(C2xC4).61(C2xDic5)320,561
(C2xC4).62(C2xDic5) = C42:9Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4320(C2xC4).62(C2xDic5)320,563
(C2xC4).63(C2xDic5) = C42:5Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4320(C2xC4).63(C2xDic5)320,564
(C2xC4).64(C2xDic5) = C24.4Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC480(C2xC4).64(C2xDic5)320,834
(C2xC4).65(C2xDic5) = C4xC23.D5φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4160(C2xC4).65(C2xDic5)320,836
(C2xC4).66(C2xDic5) = C24.63D10φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4160(C2xC4).66(C2xDic5)320,838
(C2xC4).67(C2xDic5) = C40:6C8φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4320(C2xC4).67(C2xDic5)320,15
(C2xC4).68(C2xDic5) = C40:5C8φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4320(C2xC4).68(C2xDic5)320,16
(C2xC4).69(C2xDic5) = C40.7C8φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4802(C2xC4).69(C2xDic5)320,21
(C2xC4).70(C2xDic5) = C20.45C42φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4804(C2xC4).70(C2xDic5)320,24
(C2xC4).71(C2xDic5) = C42:6Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC480(C2xC4).71(C2xDic5)320,81
(C2xC4).72(C2xDic5) = C42:1Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4804(C2xC4).72(C2xDic5)320,89
(C2xC4).73(C2xDic5) = C20.39C42φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4320(C2xC4).73(C2xDic5)320,109
(C2xC4).74(C2xDic5) = C20.40C42φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4160(C2xC4).74(C2xDic5)320,110
(C2xC4).75(C2xDic5) = C40.D4φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4804(C2xC4).75(C2xDic5)320,111
(C2xC4).76(C2xDic5) = (C2xC40):C4φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4804(C2xC4).76(C2xDic5)320,114
(C2xC4).77(C2xDic5) = C23.9D20φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4804(C2xC4).77(C2xDic5)320,115
(C2xC4).78(C2xDic5) = C20.51C42φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4804(C2xC4).78(C2xDic5)320,118
(C2xC4).79(C2xDic5) = C42:8Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4320(C2xC4).79(C2xDic5)320,562
(C2xC4).80(C2xDic5) = C20.42C42φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4160(C2xC4).80(C2xDic5)320,728
(C2xC4).81(C2xDic5) = C2xC40:6C4φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4320(C2xC4).81(C2xDic5)320,731
(C2xC4).82(C2xDic5) = C2xC40:5C4φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4320(C2xC4).82(C2xDic5)320,732
(C2xC4).83(C2xDic5) = C23.22D20φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4160(C2xC4).83(C2xDic5)320,733
(C2xC4).84(C2xDic5) = C2xC40.6C4φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4160(C2xC4).84(C2xDic5)320,734
(C2xC4).85(C2xDic5) = C24.64D10φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4160(C2xC4).85(C2xDic5)320,839
(C2xC4).86(C2xDic5) = C22xC4.Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C2xC4160(C2xC4).86(C2xDic5)320,1453
(C2xC4).87(C2xDic5) = C8xC5:2C8central extension (φ=1)320(C2xC4).87(C2xDic5)320,11
(C2xC4).88(C2xDic5) = C42.279D10central extension (φ=1)320(C2xC4).88(C2xDic5)320,12
(C2xC4).89(C2xDic5) = C40:8C8central extension (φ=1)320(C2xC4).89(C2xDic5)320,13
(C2xC4).90(C2xDic5) = C4xC5:2C16central extension (φ=1)320(C2xC4).90(C2xDic5)320,18
(C2xC4).91(C2xDic5) = C40.10C8central extension (φ=1)320(C2xC4).91(C2xDic5)320,19
(C2xC4).92(C2xDic5) = C20:3C16central extension (φ=1)320(C2xC4).92(C2xDic5)320,20
(C2xC4).93(C2xDic5) = C40.91D4central extension (φ=1)160(C2xC4).93(C2xDic5)320,107
(C2xC4).94(C2xDic5) = (C2xC40):15C4central extension (φ=1)320(C2xC4).94(C2xDic5)320,108
(C2xC4).95(C2xDic5) = C2xC4xC5:2C8central extension (φ=1)320(C2xC4).95(C2xDic5)320,547
(C2xC4).96(C2xDic5) = C2xC42.D5central extension (φ=1)320(C2xC4).96(C2xDic5)320,548
(C2xC4).97(C2xDic5) = C2xC20:3C8central extension (φ=1)320(C2xC4).97(C2xDic5)320,550
(C2xC4).98(C2xDic5) = C42.6Dic5central extension (φ=1)160(C2xC4).98(C2xDic5)320,552
(C2xC4).99(C2xDic5) = C42xDic5central extension (φ=1)320(C2xC4).99(C2xDic5)320,557
(C2xC4).100(C2xDic5) = C22xC5:2C16central extension (φ=1)320(C2xC4).100(C2xDic5)320,723
(C2xC4).101(C2xDic5) = C2xC20.4C8central extension (φ=1)160(C2xC4).101(C2xDic5)320,724
(C2xC4).102(C2xDic5) = C2xC8xDic5central extension (φ=1)320(C2xC4).102(C2xDic5)320,725
(C2xC4).103(C2xDic5) = C2xC40:8C4central extension (φ=1)320(C2xC4).103(C2xDic5)320,727
(C2xC4).104(C2xDic5) = C2xC20.55D4central extension (φ=1)160(C2xC4).104(C2xDic5)320,833
(C2xC4).105(C2xDic5) = C23xC5:2C8central extension (φ=1)320(C2xC4).105(C2xDic5)320,1452

׿
x
:
Z
F
o
wr
Q
<