extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC4).1(C2xDic5) = C42:Dic5 | φ: C2xDic5/C10 → C4 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).1(C2xDic5) | 320,99 |
(C2xC4).2(C2xDic5) = C42.Dic5 | φ: C2xDic5/C10 → C4 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).2(C2xDic5) | 320,100 |
(C2xC4).3(C2xDic5) = C42:3Dic5 | φ: C2xDic5/C10 → C4 ⊆ Aut C2xC4 | 40 | 4 | (C2xC4).3(C2xDic5) | 320,103 |
(C2xC4).4(C2xDic5) = C42.3Dic5 | φ: C2xDic5/C10 → C4 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).4(C2xDic5) | 320,106 |
(C2xC4).5(C2xDic5) = (D4xC10).29C4 | φ: C2xDic5/C10 → C4 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).5(C2xDic5) | 320,864 |
(C2xC4).6(C2xDic5) = (D4xC10):22C4 | φ: C2xDic5/C10 → C4 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).6(C2xDic5) | 320,867 |
(C2xC4).7(C2xDic5) = C4:C4:Dic5 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 80 | | (C2xC4).7(C2xDic5) | 320,95 |
(C2xC4).8(C2xDic5) = C10.29C4wrC2 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 80 | | (C2xC4).8(C2xDic5) | 320,96 |
(C2xC4).9(C2xDic5) = C42.7D10 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).9(C2xDic5) | 320,98 |
(C2xC4).10(C2xDic5) = C42.8D10 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 320 | | (C2xC4).10(C2xDic5) | 320,101 |
(C2xC4).11(C2xDic5) = C20.9D8 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).11(C2xDic5) | 320,102 |
(C2xC4).12(C2xDic5) = C20.5Q16 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 320 | | (C2xC4).12(C2xDic5) | 320,104 |
(C2xC4).13(C2xDic5) = C20.10D8 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 320 | | (C2xC4).13(C2xDic5) | 320,105 |
(C2xC4).14(C2xDic5) = M4(2):Dic5 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).14(C2xDic5) | 320,112 |
(C2xC4).15(C2xDic5) = M4(2):4Dic5 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).15(C2xDic5) | 320,117 |
(C2xC4).16(C2xDic5) = C24.8D10 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).16(C2xDic5) | 320,578 |
(C2xC4).17(C2xDic5) = C4:C4:5Dic5 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 320 | | (C2xC4).17(C2xDic5) | 320,608 |
(C2xC4).18(C2xDic5) = C20:6(C4:C4) | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 320 | | (C2xC4).18(C2xDic5) | 320,612 |
(C2xC4).19(C2xDic5) = C42.187D10 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).19(C2xDic5) | 320,627 |
(C2xC4).20(C2xDic5) = C20:7M4(2) | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).20(C2xDic5) | 320,639 |
(C2xC4).21(C2xDic5) = C23.47D20 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).21(C2xDic5) | 320,748 |
(C2xC4).22(C2xDic5) = M4(2).Dic5 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).22(C2xDic5) | 320,752 |
(C2xC4).23(C2xDic5) = (D4xC10):18C4 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 80 | | (C2xC4).23(C2xDic5) | 320,842 |
(C2xC4).24(C2xDic5) = C2xC20.D4 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 80 | | (C2xC4).24(C2xDic5) | 320,843 |
(C2xC4).25(C2xDic5) = (Q8xC10):16C4 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).25(C2xDic5) | 320,852 |
(C2xC4).26(C2xDic5) = C2xC20.10D4 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).26(C2xDic5) | 320,853 |
(C2xC4).27(C2xDic5) = (Q8xC10):17C4 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 320 | | (C2xC4).27(C2xDic5) | 320,857 |
(C2xC4).28(C2xDic5) = C4oD4:Dic5 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).28(C2xDic5) | 320,859 |
(C2xC4).29(C2xDic5) = (D4xC10):21C4 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).29(C2xDic5) | 320,863 |
(C2xC4).30(C2xDic5) = C10.422- 1+4 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 160 | | (C2xC4).30(C2xDic5) | 320,1484 |
(C2xC4).31(C2xDic5) = C20.76C24 | φ: C2xDic5/C10 → C22 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).31(C2xDic5) | 320,1491 |
(C2xC4).32(C2xDic5) = C4:C4xDic5 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).32(C2xDic5) | 320,602 |
(C2xC4).33(C2xDic5) = D4xC5:2C8 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).33(C2xDic5) | 320,637 |
(C2xC4).34(C2xDic5) = C42.47D10 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).34(C2xDic5) | 320,638 |
(C2xC4).35(C2xDic5) = C20.31C42 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).35(C2xDic5) | 320,87 |
(C2xC4).36(C2xDic5) = C20.32C42 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 80 | | (C2xC4).36(C2xDic5) | 320,90 |
(C2xC4).37(C2xDic5) = C20.57D8 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).37(C2xDic5) | 320,92 |
(C2xC4).38(C2xDic5) = C20.26Q16 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).38(C2xDic5) | 320,93 |
(C2xC4).39(C2xDic5) = C20.33C42 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 80 | | (C2xC4).39(C2xDic5) | 320,113 |
(C2xC4).40(C2xDic5) = C20.34C42 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).40(C2xDic5) | 320,116 |
(C2xC4).41(C2xDic5) = C40.92D4 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 160 | 4 | (C2xC4).41(C2xDic5) | 320,119 |
(C2xC4).42(C2xDic5) = C20.35C42 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).42(C2xDic5) | 320,624 |
(C2xC4).43(C2xDic5) = C42.43D10 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).43(C2xDic5) | 320,626 |
(C2xC4).44(C2xDic5) = Q8xC5:2C8 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).44(C2xDic5) | 320,650 |
(C2xC4).45(C2xDic5) = C42.210D10 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).45(C2xDic5) | 320,651 |
(C2xC4).46(C2xDic5) = M4(2)xDic5 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).46(C2xDic5) | 320,744 |
(C2xC4).47(C2xDic5) = C20.37C42 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).47(C2xDic5) | 320,749 |
(C2xC4).48(C2xDic5) = C40.70C23 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 160 | 4 | (C2xC4).48(C2xDic5) | 320,767 |
(C2xC4).49(C2xDic5) = C2xD4:Dic5 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).49(C2xDic5) | 320,841 |
(C2xC4).50(C2xDic5) = C24.19D10 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).50(C2xDic5) | 320,848 |
(C2xC4).51(C2xDic5) = C2xQ8:Dic5 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).51(C2xDic5) | 320,851 |
(C2xC4).52(C2xDic5) = C20.(C2xD4) | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).52(C2xDic5) | 320,860 |
(C2xC4).53(C2xDic5) = (D4xC10).24C4 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).53(C2xDic5) | 320,861 |
(C2xC4).54(C2xDic5) = C2xD4:2Dic5 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 80 | | (C2xC4).54(C2xDic5) | 320,862 |
(C2xC4).55(C2xDic5) = C2xQ8xDic5 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).55(C2xDic5) | 320,1483 |
(C2xC4).56(C2xDic5) = C2xD4.Dic5 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).56(C2xDic5) | 320,1490 |
(C2xC4).57(C2xDic5) = C4xC4.Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).57(C2xDic5) | 320,549 |
(C2xC4).58(C2xDic5) = C20:13M4(2) | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).58(C2xDic5) | 320,551 |
(C2xC4).59(C2xDic5) = C42.7Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).59(C2xDic5) | 320,553 |
(C2xC4).60(C2xDic5) = C42:4Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).60(C2xDic5) | 320,559 |
(C2xC4).61(C2xDic5) = C4xC4:Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).61(C2xDic5) | 320,561 |
(C2xC4).62(C2xDic5) = C42:9Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).62(C2xDic5) | 320,563 |
(C2xC4).63(C2xDic5) = C42:5Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).63(C2xDic5) | 320,564 |
(C2xC4).64(C2xDic5) = C24.4Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 80 | | (C2xC4).64(C2xDic5) | 320,834 |
(C2xC4).65(C2xDic5) = C4xC23.D5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).65(C2xDic5) | 320,836 |
(C2xC4).66(C2xDic5) = C24.63D10 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).66(C2xDic5) | 320,838 |
(C2xC4).67(C2xDic5) = C40:6C8 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).67(C2xDic5) | 320,15 |
(C2xC4).68(C2xDic5) = C40:5C8 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).68(C2xDic5) | 320,16 |
(C2xC4).69(C2xDic5) = C40.7C8 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 80 | 2 | (C2xC4).69(C2xDic5) | 320,21 |
(C2xC4).70(C2xDic5) = C20.45C42 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).70(C2xDic5) | 320,24 |
(C2xC4).71(C2xDic5) = C42:6Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 80 | | (C2xC4).71(C2xDic5) | 320,81 |
(C2xC4).72(C2xDic5) = C42:1Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).72(C2xDic5) | 320,89 |
(C2xC4).73(C2xDic5) = C20.39C42 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).73(C2xDic5) | 320,109 |
(C2xC4).74(C2xDic5) = C20.40C42 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).74(C2xDic5) | 320,110 |
(C2xC4).75(C2xDic5) = C40.D4 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).75(C2xDic5) | 320,111 |
(C2xC4).76(C2xDic5) = (C2xC40):C4 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).76(C2xDic5) | 320,114 |
(C2xC4).77(C2xDic5) = C23.9D20 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).77(C2xDic5) | 320,115 |
(C2xC4).78(C2xDic5) = C20.51C42 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 80 | 4 | (C2xC4).78(C2xDic5) | 320,118 |
(C2xC4).79(C2xDic5) = C42:8Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).79(C2xDic5) | 320,562 |
(C2xC4).80(C2xDic5) = C20.42C42 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).80(C2xDic5) | 320,728 |
(C2xC4).81(C2xDic5) = C2xC40:6C4 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).81(C2xDic5) | 320,731 |
(C2xC4).82(C2xDic5) = C2xC40:5C4 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 320 | | (C2xC4).82(C2xDic5) | 320,732 |
(C2xC4).83(C2xDic5) = C23.22D20 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).83(C2xDic5) | 320,733 |
(C2xC4).84(C2xDic5) = C2xC40.6C4 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).84(C2xDic5) | 320,734 |
(C2xC4).85(C2xDic5) = C24.64D10 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).85(C2xDic5) | 320,839 |
(C2xC4).86(C2xDic5) = C22xC4.Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C2xC4 | 160 | | (C2xC4).86(C2xDic5) | 320,1453 |
(C2xC4).87(C2xDic5) = C8xC5:2C8 | central extension (φ=1) | 320 | | (C2xC4).87(C2xDic5) | 320,11 |
(C2xC4).88(C2xDic5) = C42.279D10 | central extension (φ=1) | 320 | | (C2xC4).88(C2xDic5) | 320,12 |
(C2xC4).89(C2xDic5) = C40:8C8 | central extension (φ=1) | 320 | | (C2xC4).89(C2xDic5) | 320,13 |
(C2xC4).90(C2xDic5) = C4xC5:2C16 | central extension (φ=1) | 320 | | (C2xC4).90(C2xDic5) | 320,18 |
(C2xC4).91(C2xDic5) = C40.10C8 | central extension (φ=1) | 320 | | (C2xC4).91(C2xDic5) | 320,19 |
(C2xC4).92(C2xDic5) = C20:3C16 | central extension (φ=1) | 320 | | (C2xC4).92(C2xDic5) | 320,20 |
(C2xC4).93(C2xDic5) = C40.91D4 | central extension (φ=1) | 160 | | (C2xC4).93(C2xDic5) | 320,107 |
(C2xC4).94(C2xDic5) = (C2xC40):15C4 | central extension (φ=1) | 320 | | (C2xC4).94(C2xDic5) | 320,108 |
(C2xC4).95(C2xDic5) = C2xC4xC5:2C8 | central extension (φ=1) | 320 | | (C2xC4).95(C2xDic5) | 320,547 |
(C2xC4).96(C2xDic5) = C2xC42.D5 | central extension (φ=1) | 320 | | (C2xC4).96(C2xDic5) | 320,548 |
(C2xC4).97(C2xDic5) = C2xC20:3C8 | central extension (φ=1) | 320 | | (C2xC4).97(C2xDic5) | 320,550 |
(C2xC4).98(C2xDic5) = C42.6Dic5 | central extension (φ=1) | 160 | | (C2xC4).98(C2xDic5) | 320,552 |
(C2xC4).99(C2xDic5) = C42xDic5 | central extension (φ=1) | 320 | | (C2xC4).99(C2xDic5) | 320,557 |
(C2xC4).100(C2xDic5) = C22xC5:2C16 | central extension (φ=1) | 320 | | (C2xC4).100(C2xDic5) | 320,723 |
(C2xC4).101(C2xDic5) = C2xC20.4C8 | central extension (φ=1) | 160 | | (C2xC4).101(C2xDic5) | 320,724 |
(C2xC4).102(C2xDic5) = C2xC8xDic5 | central extension (φ=1) | 320 | | (C2xC4).102(C2xDic5) | 320,725 |
(C2xC4).103(C2xDic5) = C2xC40:8C4 | central extension (φ=1) | 320 | | (C2xC4).103(C2xDic5) | 320,727 |
(C2xC4).104(C2xDic5) = C2xC20.55D4 | central extension (φ=1) | 160 | | (C2xC4).104(C2xDic5) | 320,833 |
(C2xC4).105(C2xDic5) = C23xC5:2C8 | central extension (φ=1) | 320 | | (C2xC4).105(C2xDic5) | 320,1452 |