metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (D4×C10)⋊18C4, (C2×D4)⋊4Dic5, C20.203(C2×D4), (C2×C20).189D4, D4.5(C2×Dic5), (C22×D4).2D5, (C2×D4).196D10, D4⋊Dic5⋊37C2, C4⋊Dic5⋊68C22, C4.8(C23.D5), C20.78(C22⋊C4), (C2×C20).470C23, C20.139(C22×C4), (C22×C10).195D4, (C22×C4).147D10, C23.84(C5⋊D4), C5⋊5(C23.37D4), C4.10(C22×Dic5), C10.101(C8⋊C22), C2.5(D4.D10), (D4×C10).238C22, C23.21D10⋊18C2, (C22×C20).195C22, C22.20(C23.D5), (D4×C2×C10).2C2, C4.89(C2×C5⋊D4), (C2×C5⋊2C8)⋊9C22, (C5×D4).36(C2×C4), (C2×C20).289(C2×C4), C2.8(C2×C23.D5), (C2×C10).552(C2×D4), (C2×C4.Dic5)⋊17C2, (C2×C4).23(C2×Dic5), C22.90(C2×C5⋊D4), (C2×C4).196(C5⋊D4), C10.113(C2×C22⋊C4), (C2×C4).557(C22×D5), (C2×C10).175(C22⋊C4), SmallGroup(320,842)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (D4×C10)⋊18C4
G = < a,b,c,d | a10=b4=c2=d4=1, ab=ba, ac=ca, dad-1=a-1b2, cbc=dbd-1=b-1, dcd-1=b-1c >
Subgroups: 526 in 190 conjugacy classes, 71 normal (23 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C5, C8, C2×C4, C2×C4, C2×C4, D4, D4, C23, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C2×D4, C24, Dic5, C20, C20, C2×C10, C2×C10, C2×C10, D4⋊C4, C42⋊C2, C2×M4(2), C22×D4, C5⋊2C8, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×D4, C22×C10, C22×C10, C23.37D4, C2×C5⋊2C8, C4.Dic5, C4×Dic5, C4⋊Dic5, C23.D5, C22×C20, D4×C10, D4×C10, C23×C10, D4⋊Dic5, C2×C4.Dic5, C23.21D10, D4×C2×C10, (D4×C10)⋊18C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, Dic5, D10, C2×C22⋊C4, C8⋊C22, C2×Dic5, C5⋊D4, C22×D5, C23.37D4, C23.D5, C22×Dic5, C2×C5⋊D4, D4.D10, C2×C23.D5, (D4×C10)⋊18C4
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 13 9 16)(2 14 10 17)(3 15 6 18)(4 11 7 19)(5 12 8 20)(21 31 29 39)(22 32 30 40)(23 33 26 36)(24 34 27 37)(25 35 28 38)(41 56 46 51)(42 57 47 52)(43 58 48 53)(44 59 49 54)(45 60 50 55)(61 72 66 77)(62 73 67 78)(63 74 68 79)(64 75 69 80)(65 76 70 71)
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 37)(12 38)(13 39)(14 40)(15 36)(16 31)(17 32)(18 33)(19 34)(20 35)(41 77)(42 78)(43 79)(44 80)(45 71)(46 72)(47 73)(48 74)(49 75)(50 76)(51 61)(52 62)(53 63)(54 64)(55 65)(56 66)(57 67)(58 68)(59 69)(60 70)
(1 43 21 63)(2 47 22 67)(3 41 23 61)(4 45 24 65)(5 49 25 69)(6 46 26 66)(7 50 27 70)(8 44 28 64)(9 48 29 68)(10 42 30 62)(11 55 34 71)(12 59 35 75)(13 53 31 79)(14 57 32 73)(15 51 33 77)(16 58 39 74)(17 52 40 78)(18 56 36 72)(19 60 37 76)(20 54 38 80)
G:=sub<Sym(80)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,13,9,16)(2,14,10,17)(3,15,6,18)(4,11,7,19)(5,12,8,20)(21,31,29,39)(22,32,30,40)(23,33,26,36)(24,34,27,37)(25,35,28,38)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,72,66,77)(62,73,67,78)(63,74,68,79)(64,75,69,80)(65,76,70,71), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,37)(12,38)(13,39)(14,40)(15,36)(16,31)(17,32)(18,33)(19,34)(20,35)(41,77)(42,78)(43,79)(44,80)(45,71)(46,72)(47,73)(48,74)(49,75)(50,76)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(57,67)(58,68)(59,69)(60,70), (1,43,21,63)(2,47,22,67)(3,41,23,61)(4,45,24,65)(5,49,25,69)(6,46,26,66)(7,50,27,70)(8,44,28,64)(9,48,29,68)(10,42,30,62)(11,55,34,71)(12,59,35,75)(13,53,31,79)(14,57,32,73)(15,51,33,77)(16,58,39,74)(17,52,40,78)(18,56,36,72)(19,60,37,76)(20,54,38,80)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,13,9,16)(2,14,10,17)(3,15,6,18)(4,11,7,19)(5,12,8,20)(21,31,29,39)(22,32,30,40)(23,33,26,36)(24,34,27,37)(25,35,28,38)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,72,66,77)(62,73,67,78)(63,74,68,79)(64,75,69,80)(65,76,70,71), (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,37)(12,38)(13,39)(14,40)(15,36)(16,31)(17,32)(18,33)(19,34)(20,35)(41,77)(42,78)(43,79)(44,80)(45,71)(46,72)(47,73)(48,74)(49,75)(50,76)(51,61)(52,62)(53,63)(54,64)(55,65)(56,66)(57,67)(58,68)(59,69)(60,70), (1,43,21,63)(2,47,22,67)(3,41,23,61)(4,45,24,65)(5,49,25,69)(6,46,26,66)(7,50,27,70)(8,44,28,64)(9,48,29,68)(10,42,30,62)(11,55,34,71)(12,59,35,75)(13,53,31,79)(14,57,32,73)(15,51,33,77)(16,58,39,74)(17,52,40,78)(18,56,36,72)(19,60,37,76)(20,54,38,80) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,13,9,16),(2,14,10,17),(3,15,6,18),(4,11,7,19),(5,12,8,20),(21,31,29,39),(22,32,30,40),(23,33,26,36),(24,34,27,37),(25,35,28,38),(41,56,46,51),(42,57,47,52),(43,58,48,53),(44,59,49,54),(45,60,50,55),(61,72,66,77),(62,73,67,78),(63,74,68,79),(64,75,69,80),(65,76,70,71)], [(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,37),(12,38),(13,39),(14,40),(15,36),(16,31),(17,32),(18,33),(19,34),(20,35),(41,77),(42,78),(43,79),(44,80),(45,71),(46,72),(47,73),(48,74),(49,75),(50,76),(51,61),(52,62),(53,63),(54,64),(55,65),(56,66),(57,67),(58,68),(59,69),(60,70)], [(1,43,21,63),(2,47,22,67),(3,41,23,61),(4,45,24,65),(5,49,25,69),(6,46,26,66),(7,50,27,70),(8,44,28,64),(9,48,29,68),(10,42,30,62),(11,55,34,71),(12,59,35,75),(13,53,31,79),(14,57,32,73),(15,51,33,77),(16,58,39,74),(17,52,40,78),(18,56,36,72),(19,60,37,76),(20,54,38,80)]])
62 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 8A | 8B | 8C | 8D | 10A | ··· | 10N | 10O | ··· | 10AD | 20A | ··· | 20H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 20 | 20 | 20 | 20 | 2 | 2 | 20 | 20 | 20 | 20 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
62 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | + | + | ||||
image | C1 | C2 | C2 | C2 | C2 | C4 | D4 | D4 | D5 | D10 | Dic5 | D10 | C5⋊D4 | C5⋊D4 | C8⋊C22 | D4.D10 |
kernel | (D4×C10)⋊18C4 | D4⋊Dic5 | C2×C4.Dic5 | C23.21D10 | D4×C2×C10 | D4×C10 | C2×C20 | C22×C10 | C22×D4 | C22×C4 | C2×D4 | C2×D4 | C2×C4 | C23 | C10 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 8 | 3 | 1 | 2 | 2 | 8 | 4 | 12 | 4 | 2 | 8 |
Matrix representation of (D4×C10)⋊18C4 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 0 |
0 | 0 | 0 | 0 | 0 | 10 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 39 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 2 |
0 | 0 | 0 | 0 | 40 | 40 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 39 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 40 | 40 |
0 | 40 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,10,0,0,0,0,0,0,10],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,1,0,0,0,0,39,1,0,0,0,0,0,0,1,40,0,0,0,0,2,40],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,39,1,0,0,0,0,0,0,1,40,0,0,0,0,0,40],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;
(D4×C10)⋊18C4 in GAP, Magma, Sage, TeX
(D_4\times C_{10})\rtimes_{18}C_4
% in TeX
G:=Group("(D4xC10):18C4");
// GroupNames label
G:=SmallGroup(320,842);
// by ID
G=gap.SmallGroup(320,842);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,232,422,387,1684,438,102,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^4=c^2=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^2,c*b*c=d*b*d^-1=b^-1,d*c*d^-1=b^-1*c>;
// generators/relations