direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C10×C4⋊1D4, C4⋊1(D4×C10), (C2×C20)⋊33D4, C20⋊12(C2×D4), (C2×C42)⋊11C10, C42⋊18(C2×C10), (C4×C20)⋊59C22, (C22×D4)⋊5C10, (D4×C10)⋊63C22, C24.15(C2×C10), C22.63(D4×C10), (C2×C20).961C23, (C2×C10).350C24, C10.186(C22×D4), C23.8(C22×C10), (C23×C10).15C22, C22.24(C23×C10), (C22×C10).88C23, (C22×C20).596C22, (C2×C4×C20)⋊24C2, (C2×C4)⋊7(C5×D4), (D4×C2×C10)⋊20C2, C2.10(D4×C2×C10), (C2×D4)⋊11(C2×C10), (C2×C10).684(C2×D4), (C2×C4).136(C22×C10), (C22×C4).124(C2×C10), SmallGroup(320,1532)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C10×C4⋊1D4
G = < a,b,c,d | a10=b4=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=b-1, dcd=c-1 >
Subgroups: 882 in 498 conjugacy classes, 210 normal (10 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, D4, C23, C23, C23, C10, C10, C42, C22×C4, C2×D4, C2×D4, C24, C20, C2×C10, C2×C10, C2×C10, C2×C42, C4⋊1D4, C22×D4, C2×C20, C5×D4, C22×C10, C22×C10, C22×C10, C2×C4⋊1D4, C4×C20, C22×C20, D4×C10, D4×C10, C23×C10, C2×C4×C20, C5×C4⋊1D4, D4×C2×C10, C10×C4⋊1D4
Quotients: C1, C2, C22, C5, D4, C23, C10, C2×D4, C24, C2×C10, C4⋊1D4, C22×D4, C5×D4, C22×C10, C2×C4⋊1D4, D4×C10, C23×C10, C5×C4⋊1D4, D4×C2×C10, C10×C4⋊1D4
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 16 62 154)(2 17 63 155)(3 18 64 156)(4 19 65 157)(5 20 66 158)(6 11 67 159)(7 12 68 160)(8 13 69 151)(9 14 70 152)(10 15 61 153)(21 41 40 55)(22 42 31 56)(23 43 32 57)(24 44 33 58)(25 45 34 59)(26 46 35 60)(27 47 36 51)(28 48 37 52)(29 49 38 53)(30 50 39 54)(71 139 99 111)(72 140 100 112)(73 131 91 113)(74 132 92 114)(75 133 93 115)(76 134 94 116)(77 135 95 117)(78 136 96 118)(79 137 97 119)(80 138 98 120)(81 145 105 121)(82 146 106 122)(83 147 107 123)(84 148 108 124)(85 149 109 125)(86 150 110 126)(87 141 101 127)(88 142 102 128)(89 143 103 129)(90 144 104 130)
(1 97 60 107)(2 98 51 108)(3 99 52 109)(4 100 53 110)(5 91 54 101)(6 92 55 102)(7 93 56 103)(8 94 57 104)(9 95 58 105)(10 96 59 106)(11 114 21 128)(12 115 22 129)(13 116 23 130)(14 117 24 121)(15 118 25 122)(16 119 26 123)(17 120 27 124)(18 111 28 125)(19 112 29 126)(20 113 30 127)(31 143 160 133)(32 144 151 134)(33 145 152 135)(34 146 153 136)(35 147 154 137)(36 148 155 138)(37 149 156 139)(38 150 157 140)(39 141 158 131)(40 142 159 132)(41 88 67 74)(42 89 68 75)(43 90 69 76)(44 81 70 77)(45 82 61 78)(46 83 62 79)(47 84 63 80)(48 85 64 71)(49 86 65 72)(50 87 66 73)
(1 114)(2 115)(3 116)(4 117)(5 118)(6 119)(7 120)(8 111)(9 112)(10 113)(11 97)(12 98)(13 99)(14 100)(15 91)(16 92)(17 93)(18 94)(19 95)(20 96)(21 107)(22 108)(23 109)(24 110)(25 101)(26 102)(27 103)(28 104)(29 105)(30 106)(31 84)(32 85)(33 86)(34 87)(35 88)(36 89)(37 90)(38 81)(39 82)(40 83)(41 147)(42 148)(43 149)(44 150)(45 141)(46 142)(47 143)(48 144)(49 145)(50 146)(51 129)(52 130)(53 121)(54 122)(55 123)(56 124)(57 125)(58 126)(59 127)(60 128)(61 131)(62 132)(63 133)(64 134)(65 135)(66 136)(67 137)(68 138)(69 139)(70 140)(71 151)(72 152)(73 153)(74 154)(75 155)(76 156)(77 157)(78 158)(79 159)(80 160)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,16,62,154)(2,17,63,155)(3,18,64,156)(4,19,65,157)(5,20,66,158)(6,11,67,159)(7,12,68,160)(8,13,69,151)(9,14,70,152)(10,15,61,153)(21,41,40,55)(22,42,31,56)(23,43,32,57)(24,44,33,58)(25,45,34,59)(26,46,35,60)(27,47,36,51)(28,48,37,52)(29,49,38,53)(30,50,39,54)(71,139,99,111)(72,140,100,112)(73,131,91,113)(74,132,92,114)(75,133,93,115)(76,134,94,116)(77,135,95,117)(78,136,96,118)(79,137,97,119)(80,138,98,120)(81,145,105,121)(82,146,106,122)(83,147,107,123)(84,148,108,124)(85,149,109,125)(86,150,110,126)(87,141,101,127)(88,142,102,128)(89,143,103,129)(90,144,104,130), (1,97,60,107)(2,98,51,108)(3,99,52,109)(4,100,53,110)(5,91,54,101)(6,92,55,102)(7,93,56,103)(8,94,57,104)(9,95,58,105)(10,96,59,106)(11,114,21,128)(12,115,22,129)(13,116,23,130)(14,117,24,121)(15,118,25,122)(16,119,26,123)(17,120,27,124)(18,111,28,125)(19,112,29,126)(20,113,30,127)(31,143,160,133)(32,144,151,134)(33,145,152,135)(34,146,153,136)(35,147,154,137)(36,148,155,138)(37,149,156,139)(38,150,157,140)(39,141,158,131)(40,142,159,132)(41,88,67,74)(42,89,68,75)(43,90,69,76)(44,81,70,77)(45,82,61,78)(46,83,62,79)(47,84,63,80)(48,85,64,71)(49,86,65,72)(50,87,66,73), (1,114)(2,115)(3,116)(4,117)(5,118)(6,119)(7,120)(8,111)(9,112)(10,113)(11,97)(12,98)(13,99)(14,100)(15,91)(16,92)(17,93)(18,94)(19,95)(20,96)(21,107)(22,108)(23,109)(24,110)(25,101)(26,102)(27,103)(28,104)(29,105)(30,106)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,81)(39,82)(40,83)(41,147)(42,148)(43,149)(44,150)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,129)(52,130)(53,121)(54,122)(55,123)(56,124)(57,125)(58,126)(59,127)(60,128)(61,131)(62,132)(63,133)(64,134)(65,135)(66,136)(67,137)(68,138)(69,139)(70,140)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,16,62,154)(2,17,63,155)(3,18,64,156)(4,19,65,157)(5,20,66,158)(6,11,67,159)(7,12,68,160)(8,13,69,151)(9,14,70,152)(10,15,61,153)(21,41,40,55)(22,42,31,56)(23,43,32,57)(24,44,33,58)(25,45,34,59)(26,46,35,60)(27,47,36,51)(28,48,37,52)(29,49,38,53)(30,50,39,54)(71,139,99,111)(72,140,100,112)(73,131,91,113)(74,132,92,114)(75,133,93,115)(76,134,94,116)(77,135,95,117)(78,136,96,118)(79,137,97,119)(80,138,98,120)(81,145,105,121)(82,146,106,122)(83,147,107,123)(84,148,108,124)(85,149,109,125)(86,150,110,126)(87,141,101,127)(88,142,102,128)(89,143,103,129)(90,144,104,130), (1,97,60,107)(2,98,51,108)(3,99,52,109)(4,100,53,110)(5,91,54,101)(6,92,55,102)(7,93,56,103)(8,94,57,104)(9,95,58,105)(10,96,59,106)(11,114,21,128)(12,115,22,129)(13,116,23,130)(14,117,24,121)(15,118,25,122)(16,119,26,123)(17,120,27,124)(18,111,28,125)(19,112,29,126)(20,113,30,127)(31,143,160,133)(32,144,151,134)(33,145,152,135)(34,146,153,136)(35,147,154,137)(36,148,155,138)(37,149,156,139)(38,150,157,140)(39,141,158,131)(40,142,159,132)(41,88,67,74)(42,89,68,75)(43,90,69,76)(44,81,70,77)(45,82,61,78)(46,83,62,79)(47,84,63,80)(48,85,64,71)(49,86,65,72)(50,87,66,73), (1,114)(2,115)(3,116)(4,117)(5,118)(6,119)(7,120)(8,111)(9,112)(10,113)(11,97)(12,98)(13,99)(14,100)(15,91)(16,92)(17,93)(18,94)(19,95)(20,96)(21,107)(22,108)(23,109)(24,110)(25,101)(26,102)(27,103)(28,104)(29,105)(30,106)(31,84)(32,85)(33,86)(34,87)(35,88)(36,89)(37,90)(38,81)(39,82)(40,83)(41,147)(42,148)(43,149)(44,150)(45,141)(46,142)(47,143)(48,144)(49,145)(50,146)(51,129)(52,130)(53,121)(54,122)(55,123)(56,124)(57,125)(58,126)(59,127)(60,128)(61,131)(62,132)(63,133)(64,134)(65,135)(66,136)(67,137)(68,138)(69,139)(70,140)(71,151)(72,152)(73,153)(74,154)(75,155)(76,156)(77,157)(78,158)(79,159)(80,160) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,16,62,154),(2,17,63,155),(3,18,64,156),(4,19,65,157),(5,20,66,158),(6,11,67,159),(7,12,68,160),(8,13,69,151),(9,14,70,152),(10,15,61,153),(21,41,40,55),(22,42,31,56),(23,43,32,57),(24,44,33,58),(25,45,34,59),(26,46,35,60),(27,47,36,51),(28,48,37,52),(29,49,38,53),(30,50,39,54),(71,139,99,111),(72,140,100,112),(73,131,91,113),(74,132,92,114),(75,133,93,115),(76,134,94,116),(77,135,95,117),(78,136,96,118),(79,137,97,119),(80,138,98,120),(81,145,105,121),(82,146,106,122),(83,147,107,123),(84,148,108,124),(85,149,109,125),(86,150,110,126),(87,141,101,127),(88,142,102,128),(89,143,103,129),(90,144,104,130)], [(1,97,60,107),(2,98,51,108),(3,99,52,109),(4,100,53,110),(5,91,54,101),(6,92,55,102),(7,93,56,103),(8,94,57,104),(9,95,58,105),(10,96,59,106),(11,114,21,128),(12,115,22,129),(13,116,23,130),(14,117,24,121),(15,118,25,122),(16,119,26,123),(17,120,27,124),(18,111,28,125),(19,112,29,126),(20,113,30,127),(31,143,160,133),(32,144,151,134),(33,145,152,135),(34,146,153,136),(35,147,154,137),(36,148,155,138),(37,149,156,139),(38,150,157,140),(39,141,158,131),(40,142,159,132),(41,88,67,74),(42,89,68,75),(43,90,69,76),(44,81,70,77),(45,82,61,78),(46,83,62,79),(47,84,63,80),(48,85,64,71),(49,86,65,72),(50,87,66,73)], [(1,114),(2,115),(3,116),(4,117),(5,118),(6,119),(7,120),(8,111),(9,112),(10,113),(11,97),(12,98),(13,99),(14,100),(15,91),(16,92),(17,93),(18,94),(19,95),(20,96),(21,107),(22,108),(23,109),(24,110),(25,101),(26,102),(27,103),(28,104),(29,105),(30,106),(31,84),(32,85),(33,86),(34,87),(35,88),(36,89),(37,90),(38,81),(39,82),(40,83),(41,147),(42,148),(43,149),(44,150),(45,141),(46,142),(47,143),(48,144),(49,145),(50,146),(51,129),(52,130),(53,121),(54,122),(55,123),(56,124),(57,125),(58,126),(59,127),(60,128),(61,131),(62,132),(63,133),(64,134),(65,135),(66,136),(67,137),(68,138),(69,139),(70,140),(71,151),(72,152),(73,153),(74,154),(75,155),(76,156),(77,157),(78,158),(79,159),(80,160)]])
140 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 4A | ··· | 4L | 5A | 5B | 5C | 5D | 10A | ··· | 10AB | 10AC | ··· | 10BH | 20A | ··· | 20AV |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 5 | 5 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 2 | ··· | 2 | 1 | 1 | 1 | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 2 | ··· | 2 |
140 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C5 | C10 | C10 | C10 | D4 | C5×D4 |
kernel | C10×C4⋊1D4 | C2×C4×C20 | C5×C4⋊1D4 | D4×C2×C10 | C2×C4⋊1D4 | C2×C42 | C4⋊1D4 | C22×D4 | C2×C20 | C2×C4 |
# reps | 1 | 1 | 8 | 6 | 4 | 4 | 32 | 24 | 12 | 48 |
Matrix representation of C10×C4⋊1D4 ►in GL5(𝔽41)
40 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 37 | 0 |
0 | 0 | 0 | 0 | 37 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 2 | 0 | 0 |
0 | 40 | 1 | 0 | 0 |
0 | 0 | 0 | 34 | 2 |
0 | 0 | 0 | 16 | 7 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 34 | 2 |
0 | 0 | 0 | 16 | 7 |
40 | 0 | 0 | 0 | 0 |
0 | 1 | 39 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 34 | 1 |
G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,37,0,0,0,0,0,37],[40,0,0,0,0,0,40,40,0,0,0,2,1,0,0,0,0,0,34,16,0,0,0,2,7],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,34,16,0,0,0,2,7],[40,0,0,0,0,0,1,0,0,0,0,39,40,0,0,0,0,0,40,34,0,0,0,0,1] >;
C10×C4⋊1D4 in GAP, Magma, Sage, TeX
C_{10}\times C_4\rtimes_1D_4
% in TeX
G:=Group("C10xC4:1D4");
// GroupNames label
G:=SmallGroup(320,1532);
// by ID
G=gap.SmallGroup(320,1532);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-5,-2,-2,1149,568,3446,856]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations