Copied to
clipboard

G = C2xD10:3Q8order 320 = 26·5

Direct product of C2 and D10:3Q8

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2xD10:3Q8, D10:4(C2xQ8), (C2xQ8):28D10, (C22xD5):7Q8, (C22xQ8):5D5, (C2xC20).214D4, C20.258(C2xD4), C10:5(C22:Q8), C22.37(Q8xD5), C4:Dic5:79C22, (Q8xC10):35C22, C10.53(C22xQ8), (C2xC10).305C24, (C2xC20).552C23, (C22xC4).384D10, C10.153(C22xD4), C10.D4:75C22, C23.341(C22xD5), C22.316(C23xD5), (C22xC20).285C22, (C22xC10).423C23, C22.39(Q8:2D5), (C2xDic5).157C23, (C23xD5).126C22, (C22xD5).251C23, D10:C4.157C22, (C22xDic5).164C22, (Q8xC2xC10):4C2, C5:6(C2xC22:Q8), C2.35(C2xQ8xD5), C4.98(C2xC5:D4), (D5xC22xC4).9C2, (C2xC4:Dic5):46C2, (C2xC10).98(C2xQ8), C10.127(C2xC4oD4), (C2xC10).588(C2xD4), C2.34(C2xQ8:2D5), (C2xC4xD5).332C22, C2.26(C22xC5:D4), (C2xC10.D4):49C2, (C2xC4).202(C5:D4), (C2xC4).242(C22xD5), C22.116(C2xC5:D4), (C2xD10:C4).29C2, (C2xC10).200(C4oD4), SmallGroup(320,1485)

Series: Derived Chief Lower central Upper central

C1C2xC10 — C2xD10:3Q8
C1C5C10C2xC10C22xD5C23xD5D5xC22xC4 — C2xD10:3Q8
C5C2xC10 — C2xD10:3Q8
C1C23C22xQ8

Generators and relations for C2xD10:3Q8
 G = < a,b,c,d,e | a2=b10=c2=d4=1, e2=d2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=b5c, ce=ec, ede-1=d-1 >

Subgroups: 1038 in 322 conjugacy classes, 135 normal (21 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2xC4, C2xC4, Q8, C23, C23, D5, C10, C10, C22:C4, C4:C4, C22xC4, C22xC4, C22xC4, C2xQ8, C2xQ8, C24, Dic5, C20, C20, D10, D10, C2xC10, C2xC10, C2xC22:C4, C2xC4:C4, C22:Q8, C23xC4, C22xQ8, C4xD5, C2xDic5, C2xDic5, C2xC20, C2xC20, C5xQ8, C22xD5, C22xD5, C22xC10, C2xC22:Q8, C10.D4, C4:Dic5, D10:C4, C2xC4xD5, C2xC4xD5, C22xDic5, C22xDic5, C22xC20, C22xC20, Q8xC10, Q8xC10, C23xD5, C2xC10.D4, C2xC4:Dic5, C2xD10:C4, D10:3Q8, D5xC22xC4, Q8xC2xC10, C2xD10:3Q8
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2xD4, C2xQ8, C4oD4, C24, D10, C22:Q8, C22xD4, C22xQ8, C2xC4oD4, C5:D4, C22xD5, C2xC22:Q8, Q8xD5, Q8:2D5, C2xC5:D4, C23xD5, D10:3Q8, C2xQ8xD5, C2xQ8:2D5, C22xC5:D4, C2xD10:3Q8

Smallest permutation representation of C2xD10:3Q8
On 160 points
Generators in S160
(1 105)(2 106)(3 107)(4 108)(5 109)(6 110)(7 101)(8 102)(9 103)(10 104)(11 74)(12 75)(13 76)(14 77)(15 78)(16 79)(17 80)(18 71)(19 72)(20 73)(21 100)(22 91)(23 92)(24 93)(25 94)(26 95)(27 96)(28 97)(29 98)(30 99)(31 122)(32 123)(33 124)(34 125)(35 126)(36 127)(37 128)(38 129)(39 130)(40 121)(41 120)(42 111)(43 112)(44 113)(45 114)(46 115)(47 116)(48 117)(49 118)(50 119)(51 142)(52 143)(53 144)(54 145)(55 146)(56 147)(57 148)(58 149)(59 150)(60 141)(61 140)(62 131)(63 132)(64 133)(65 134)(66 135)(67 136)(68 137)(69 138)(70 139)(81 160)(82 151)(83 152)(84 153)(85 154)(86 155)(87 156)(88 157)(89 158)(90 159)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 104)(2 103)(3 102)(4 101)(5 110)(6 109)(7 108)(8 107)(9 106)(10 105)(11 78)(12 77)(13 76)(14 75)(15 74)(16 73)(17 72)(18 71)(19 80)(20 79)(21 97)(22 96)(23 95)(24 94)(25 93)(26 92)(27 91)(28 100)(29 99)(30 98)(31 122)(32 121)(33 130)(34 129)(35 128)(36 127)(37 126)(38 125)(39 124)(40 123)(41 112)(42 111)(43 120)(44 119)(45 118)(46 117)(47 116)(48 115)(49 114)(50 113)(51 147)(52 146)(53 145)(54 144)(55 143)(56 142)(57 141)(58 150)(59 149)(60 148)(61 137)(62 136)(63 135)(64 134)(65 133)(66 132)(67 131)(68 140)(69 139)(70 138)(81 152)(82 151)(83 160)(84 159)(85 158)(86 157)(87 156)(88 155)(89 154)(90 153)
(1 45 25 34)(2 46 26 35)(3 47 27 36)(4 48 28 37)(5 49 29 38)(6 50 30 39)(7 41 21 40)(8 42 22 31)(9 43 23 32)(10 44 24 33)(11 134 154 145)(12 135 155 146)(13 136 156 147)(14 137 157 148)(15 138 158 149)(16 139 159 150)(17 140 160 141)(18 131 151 142)(19 132 152 143)(20 133 153 144)(51 71 62 82)(52 72 63 83)(53 73 64 84)(54 74 65 85)(55 75 66 86)(56 76 67 87)(57 77 68 88)(58 78 69 89)(59 79 70 90)(60 80 61 81)(91 122 102 111)(92 123 103 112)(93 124 104 113)(94 125 105 114)(95 126 106 115)(96 127 107 116)(97 128 108 117)(98 129 109 118)(99 130 110 119)(100 121 101 120)
(1 65 25 54)(2 66 26 55)(3 67 27 56)(4 68 28 57)(5 69 29 58)(6 70 30 59)(7 61 21 60)(8 62 22 51)(9 63 23 52)(10 64 24 53)(11 125 154 114)(12 126 155 115)(13 127 156 116)(14 128 157 117)(15 129 158 118)(16 130 159 119)(17 121 160 120)(18 122 151 111)(19 123 152 112)(20 124 153 113)(31 82 42 71)(32 83 43 72)(33 84 44 73)(34 85 45 74)(35 86 46 75)(36 87 47 76)(37 88 48 77)(38 89 49 78)(39 90 50 79)(40 81 41 80)(91 142 102 131)(92 143 103 132)(93 144 104 133)(94 145 105 134)(95 146 106 135)(96 147 107 136)(97 148 108 137)(98 149 109 138)(99 150 110 139)(100 141 101 140)

G:=sub<Sym(160)| (1,105)(2,106)(3,107)(4,108)(5,109)(6,110)(7,101)(8,102)(9,103)(10,104)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,71)(19,72)(20,73)(21,100)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,122)(32,123)(33,124)(34,125)(35,126)(36,127)(37,128)(38,129)(39,130)(40,121)(41,120)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,142)(52,143)(53,144)(54,145)(55,146)(56,147)(57,148)(58,149)(59,150)(60,141)(61,140)(62,131)(63,132)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(81,160)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104)(2,103)(3,102)(4,101)(5,110)(6,109)(7,108)(8,107)(9,106)(10,105)(11,78)(12,77)(13,76)(14,75)(15,74)(16,73)(17,72)(18,71)(19,80)(20,79)(21,97)(22,96)(23,95)(24,94)(25,93)(26,92)(27,91)(28,100)(29,99)(30,98)(31,122)(32,121)(33,130)(34,129)(35,128)(36,127)(37,126)(38,125)(39,124)(40,123)(41,112)(42,111)(43,120)(44,119)(45,118)(46,117)(47,116)(48,115)(49,114)(50,113)(51,147)(52,146)(53,145)(54,144)(55,143)(56,142)(57,141)(58,150)(59,149)(60,148)(61,137)(62,136)(63,135)(64,134)(65,133)(66,132)(67,131)(68,140)(69,139)(70,138)(81,152)(82,151)(83,160)(84,159)(85,158)(86,157)(87,156)(88,155)(89,154)(90,153), (1,45,25,34)(2,46,26,35)(3,47,27,36)(4,48,28,37)(5,49,29,38)(6,50,30,39)(7,41,21,40)(8,42,22,31)(9,43,23,32)(10,44,24,33)(11,134,154,145)(12,135,155,146)(13,136,156,147)(14,137,157,148)(15,138,158,149)(16,139,159,150)(17,140,160,141)(18,131,151,142)(19,132,152,143)(20,133,153,144)(51,71,62,82)(52,72,63,83)(53,73,64,84)(54,74,65,85)(55,75,66,86)(56,76,67,87)(57,77,68,88)(58,78,69,89)(59,79,70,90)(60,80,61,81)(91,122,102,111)(92,123,103,112)(93,124,104,113)(94,125,105,114)(95,126,106,115)(96,127,107,116)(97,128,108,117)(98,129,109,118)(99,130,110,119)(100,121,101,120), (1,65,25,54)(2,66,26,55)(3,67,27,56)(4,68,28,57)(5,69,29,58)(6,70,30,59)(7,61,21,60)(8,62,22,51)(9,63,23,52)(10,64,24,53)(11,125,154,114)(12,126,155,115)(13,127,156,116)(14,128,157,117)(15,129,158,118)(16,130,159,119)(17,121,160,120)(18,122,151,111)(19,123,152,112)(20,124,153,113)(31,82,42,71)(32,83,43,72)(33,84,44,73)(34,85,45,74)(35,86,46,75)(36,87,47,76)(37,88,48,77)(38,89,49,78)(39,90,50,79)(40,81,41,80)(91,142,102,131)(92,143,103,132)(93,144,104,133)(94,145,105,134)(95,146,106,135)(96,147,107,136)(97,148,108,137)(98,149,109,138)(99,150,110,139)(100,141,101,140)>;

G:=Group( (1,105)(2,106)(3,107)(4,108)(5,109)(6,110)(7,101)(8,102)(9,103)(10,104)(11,74)(12,75)(13,76)(14,77)(15,78)(16,79)(17,80)(18,71)(19,72)(20,73)(21,100)(22,91)(23,92)(24,93)(25,94)(26,95)(27,96)(28,97)(29,98)(30,99)(31,122)(32,123)(33,124)(34,125)(35,126)(36,127)(37,128)(38,129)(39,130)(40,121)(41,120)(42,111)(43,112)(44,113)(45,114)(46,115)(47,116)(48,117)(49,118)(50,119)(51,142)(52,143)(53,144)(54,145)(55,146)(56,147)(57,148)(58,149)(59,150)(60,141)(61,140)(62,131)(63,132)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(81,160)(82,151)(83,152)(84,153)(85,154)(86,155)(87,156)(88,157)(89,158)(90,159), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,104)(2,103)(3,102)(4,101)(5,110)(6,109)(7,108)(8,107)(9,106)(10,105)(11,78)(12,77)(13,76)(14,75)(15,74)(16,73)(17,72)(18,71)(19,80)(20,79)(21,97)(22,96)(23,95)(24,94)(25,93)(26,92)(27,91)(28,100)(29,99)(30,98)(31,122)(32,121)(33,130)(34,129)(35,128)(36,127)(37,126)(38,125)(39,124)(40,123)(41,112)(42,111)(43,120)(44,119)(45,118)(46,117)(47,116)(48,115)(49,114)(50,113)(51,147)(52,146)(53,145)(54,144)(55,143)(56,142)(57,141)(58,150)(59,149)(60,148)(61,137)(62,136)(63,135)(64,134)(65,133)(66,132)(67,131)(68,140)(69,139)(70,138)(81,152)(82,151)(83,160)(84,159)(85,158)(86,157)(87,156)(88,155)(89,154)(90,153), (1,45,25,34)(2,46,26,35)(3,47,27,36)(4,48,28,37)(5,49,29,38)(6,50,30,39)(7,41,21,40)(8,42,22,31)(9,43,23,32)(10,44,24,33)(11,134,154,145)(12,135,155,146)(13,136,156,147)(14,137,157,148)(15,138,158,149)(16,139,159,150)(17,140,160,141)(18,131,151,142)(19,132,152,143)(20,133,153,144)(51,71,62,82)(52,72,63,83)(53,73,64,84)(54,74,65,85)(55,75,66,86)(56,76,67,87)(57,77,68,88)(58,78,69,89)(59,79,70,90)(60,80,61,81)(91,122,102,111)(92,123,103,112)(93,124,104,113)(94,125,105,114)(95,126,106,115)(96,127,107,116)(97,128,108,117)(98,129,109,118)(99,130,110,119)(100,121,101,120), (1,65,25,54)(2,66,26,55)(3,67,27,56)(4,68,28,57)(5,69,29,58)(6,70,30,59)(7,61,21,60)(8,62,22,51)(9,63,23,52)(10,64,24,53)(11,125,154,114)(12,126,155,115)(13,127,156,116)(14,128,157,117)(15,129,158,118)(16,130,159,119)(17,121,160,120)(18,122,151,111)(19,123,152,112)(20,124,153,113)(31,82,42,71)(32,83,43,72)(33,84,44,73)(34,85,45,74)(35,86,46,75)(36,87,47,76)(37,88,48,77)(38,89,49,78)(39,90,50,79)(40,81,41,80)(91,142,102,131)(92,143,103,132)(93,144,104,133)(94,145,105,134)(95,146,106,135)(96,147,107,136)(97,148,108,137)(98,149,109,138)(99,150,110,139)(100,141,101,140) );

G=PermutationGroup([[(1,105),(2,106),(3,107),(4,108),(5,109),(6,110),(7,101),(8,102),(9,103),(10,104),(11,74),(12,75),(13,76),(14,77),(15,78),(16,79),(17,80),(18,71),(19,72),(20,73),(21,100),(22,91),(23,92),(24,93),(25,94),(26,95),(27,96),(28,97),(29,98),(30,99),(31,122),(32,123),(33,124),(34,125),(35,126),(36,127),(37,128),(38,129),(39,130),(40,121),(41,120),(42,111),(43,112),(44,113),(45,114),(46,115),(47,116),(48,117),(49,118),(50,119),(51,142),(52,143),(53,144),(54,145),(55,146),(56,147),(57,148),(58,149),(59,150),(60,141),(61,140),(62,131),(63,132),(64,133),(65,134),(66,135),(67,136),(68,137),(69,138),(70,139),(81,160),(82,151),(83,152),(84,153),(85,154),(86,155),(87,156),(88,157),(89,158),(90,159)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,104),(2,103),(3,102),(4,101),(5,110),(6,109),(7,108),(8,107),(9,106),(10,105),(11,78),(12,77),(13,76),(14,75),(15,74),(16,73),(17,72),(18,71),(19,80),(20,79),(21,97),(22,96),(23,95),(24,94),(25,93),(26,92),(27,91),(28,100),(29,99),(30,98),(31,122),(32,121),(33,130),(34,129),(35,128),(36,127),(37,126),(38,125),(39,124),(40,123),(41,112),(42,111),(43,120),(44,119),(45,118),(46,117),(47,116),(48,115),(49,114),(50,113),(51,147),(52,146),(53,145),(54,144),(55,143),(56,142),(57,141),(58,150),(59,149),(60,148),(61,137),(62,136),(63,135),(64,134),(65,133),(66,132),(67,131),(68,140),(69,139),(70,138),(81,152),(82,151),(83,160),(84,159),(85,158),(86,157),(87,156),(88,155),(89,154),(90,153)], [(1,45,25,34),(2,46,26,35),(3,47,27,36),(4,48,28,37),(5,49,29,38),(6,50,30,39),(7,41,21,40),(8,42,22,31),(9,43,23,32),(10,44,24,33),(11,134,154,145),(12,135,155,146),(13,136,156,147),(14,137,157,148),(15,138,158,149),(16,139,159,150),(17,140,160,141),(18,131,151,142),(19,132,152,143),(20,133,153,144),(51,71,62,82),(52,72,63,83),(53,73,64,84),(54,74,65,85),(55,75,66,86),(56,76,67,87),(57,77,68,88),(58,78,69,89),(59,79,70,90),(60,80,61,81),(91,122,102,111),(92,123,103,112),(93,124,104,113),(94,125,105,114),(95,126,106,115),(96,127,107,116),(97,128,108,117),(98,129,109,118),(99,130,110,119),(100,121,101,120)], [(1,65,25,54),(2,66,26,55),(3,67,27,56),(4,68,28,57),(5,69,29,58),(6,70,30,59),(7,61,21,60),(8,62,22,51),(9,63,23,52),(10,64,24,53),(11,125,154,114),(12,126,155,115),(13,127,156,116),(14,128,157,117),(15,129,158,118),(16,130,159,119),(17,121,160,120),(18,122,151,111),(19,123,152,112),(20,124,153,113),(31,82,42,71),(32,83,43,72),(33,84,44,73),(34,85,45,74),(35,86,46,75),(36,87,47,76),(37,88,48,77),(38,89,49,78),(39,90,50,79),(40,81,41,80),(91,142,102,131),(92,143,103,132),(93,144,104,133),(94,145,105,134),(95,146,106,135),(96,147,107,136),(97,148,108,137),(98,149,109,138),(99,150,110,139),(100,141,101,140)]])

68 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J4K4L4M4N4O4P5A5B10A···10N20A···20X
order12···2222244444444444444445510···1020···20
size11···110101010222244441010101020202020222···24···4

68 irreducible representations

dim1111111222222244
type++++++++-+++-+
imageC1C2C2C2C2C2C2D4Q8D5C4oD4D10D10C5:D4Q8xD5Q8:2D5
kernelC2xD10:3Q8C2xC10.D4C2xC4:Dic5C2xD10:C4D10:3Q8D5xC22xC4Q8xC2xC10C2xC20C22xD5C22xQ8C2xC10C22xC4C2xQ8C2xC4C22C22
# reps12128114424681644

Matrix representation of C2xD10:3Q8 in GL6(F41)

4000000
0400000
001000
000100
0000400
0000040
,
170000
34340000
000700
00353500
000010
000001
,
40340000
010000
0040000
0036100
0000400
0000040
,
2410000
40170000
00234000
00361800
000001
0000400
,
100000
010000
001000
000100
0000032
0000320

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,34,0,0,0,0,7,34,0,0,0,0,0,0,0,35,0,0,0,0,7,35,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,34,1,0,0,0,0,0,0,40,36,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[24,40,0,0,0,0,1,17,0,0,0,0,0,0,23,36,0,0,0,0,40,18,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,32,0,0,0,0,32,0] >;

C2xD10:3Q8 in GAP, Magma, Sage, TeX

C_2\times D_{10}\rtimes_3Q_8
% in TeX

G:=Group("C2xD10:3Q8");
// GroupNames label

G:=SmallGroup(320,1485);
// by ID

G=gap.SmallGroup(320,1485);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,184,675,297,136,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^10=c^2=d^4=1,e^2=d^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=b^5*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<