Copied to
clipboard

G = M4(2)⋊5F5order 320 = 26·5

The semidirect product of M4(2) and F5 acting through Inn(M4(2))

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: M4(2)⋊5F5, C20.7C42, D10.3C42, Dic5.3C42, C4⋊F5.C4, D5⋊C84C4, (C8×F5)⋊8C2, C8⋊D53C4, C8⋊F57C2, C8.19(C2×F5), C4.12(C4×F5), C40.19(C2×C4), C4.Dic56C4, C22⋊F5.3C4, D5.2(C8○D4), (C5×M4(2))⋊6C4, (C2×C10).7C42, C22.12(C4×F5), C4.53(C22×F5), C54(C82M4(2)), C20.93(C22×C4), C10.15(C2×C42), D5⋊C8.20C22, (C4×D5).89C23, (C8×D5).37C22, (C4×F5).19C22, D10.35(C22×C4), (D5×M4(2)).11C2, Dic5.34(C22×C4), D10.C23.4C2, (C2×C5⋊C8)⋊7C4, C5⋊C8.2(C2×C4), C2.16(C2×C4×F5), (C2×D5⋊C8).5C2, (C2×F5).4(C2×C4), (C2×C4).77(C2×F5), (C2×C20).47(C2×C4), C52C8.21(C2×C4), (C4×D5).18(C2×C4), (C2×C4×D5).194C22, (C2×Dic5).67(C2×C4), (C22×D5).53(C2×C4), SmallGroup(320,1066)

Series: Derived Chief Lower central Upper central

C1C10 — M4(2)⋊5F5
C1C5C10Dic5C4×D5D5⋊C8C2×D5⋊C8 — M4(2)⋊5F5
C5C10 — M4(2)⋊5F5
C1C4M4(2)

Generators and relations for M4(2)⋊5F5
 G = < a,b,c,d | a8=b2=c5=d4=1, bab=dad-1=a5, ac=ca, bc=cb, dbd-1=a4b, dcd-1=c3 >

Subgroups: 394 in 130 conjugacy classes, 66 normal (32 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C8, C8, C2×C4, C2×C4, C23, D5, D5, C10, C10, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), M4(2), C22×C4, Dic5, C20, F5, D10, D10, C2×C10, C4×C8, C8⋊C4, C42⋊C2, C22×C8, C2×M4(2), C52C8, C40, C5⋊C8, C4×D5, C2×Dic5, C2×C20, C2×F5, C22×D5, C82M4(2), C8×D5, C8⋊D5, C4.Dic5, C5×M4(2), D5⋊C8, D5⋊C8, C4×F5, C4⋊F5, C2×C5⋊C8, C22⋊F5, C2×C4×D5, C8×F5, C8⋊F5, D5×M4(2), C2×D5⋊C8, D10.C23, M4(2)⋊5F5
Quotients: C1, C2, C4, C22, C2×C4, C23, C42, C22×C4, F5, C2×C42, C8○D4, C2×F5, C82M4(2), C4×F5, C22×F5, C2×C4×F5, M4(2)⋊5F5

Smallest permutation representation of M4(2)⋊5F5
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 63)(2 60)(3 57)(4 62)(5 59)(6 64)(7 61)(8 58)(9 47)(10 44)(11 41)(12 46)(13 43)(14 48)(15 45)(16 42)(17 39)(18 36)(19 33)(20 38)(21 35)(22 40)(23 37)(24 34)(25 66)(26 71)(27 68)(28 65)(29 70)(30 67)(31 72)(32 69)(49 73)(50 78)(51 75)(52 80)(53 77)(54 74)(55 79)(56 76)
(1 14 34 68 75)(2 15 35 69 76)(3 16 36 70 77)(4 9 37 71 78)(5 10 38 72 79)(6 11 39 65 80)(7 12 40 66 73)(8 13 33 67 74)(17 28 52 64 41)(18 29 53 57 42)(19 30 54 58 43)(20 31 55 59 44)(21 32 56 60 45)(22 25 49 61 46)(23 26 50 62 47)(24 27 51 63 48)
(1 59 5 63)(2 64 6 60)(3 61 7 57)(4 58 8 62)(9 19 74 26)(10 24 75 31)(11 21 76 28)(12 18 77 25)(13 23 78 30)(14 20 79 27)(15 17 80 32)(16 22 73 29)(33 50 71 43)(34 55 72 48)(35 52 65 45)(36 49 66 42)(37 54 67 47)(38 51 68 44)(39 56 69 41)(40 53 70 46)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,63)(2,60)(3,57)(4,62)(5,59)(6,64)(7,61)(8,58)(9,47)(10,44)(11,41)(12,46)(13,43)(14,48)(15,45)(16,42)(17,39)(18,36)(19,33)(20,38)(21,35)(22,40)(23,37)(24,34)(25,66)(26,71)(27,68)(28,65)(29,70)(30,67)(31,72)(32,69)(49,73)(50,78)(51,75)(52,80)(53,77)(54,74)(55,79)(56,76), (1,14,34,68,75)(2,15,35,69,76)(3,16,36,70,77)(4,9,37,71,78)(5,10,38,72,79)(6,11,39,65,80)(7,12,40,66,73)(8,13,33,67,74)(17,28,52,64,41)(18,29,53,57,42)(19,30,54,58,43)(20,31,55,59,44)(21,32,56,60,45)(22,25,49,61,46)(23,26,50,62,47)(24,27,51,63,48), (1,59,5,63)(2,64,6,60)(3,61,7,57)(4,58,8,62)(9,19,74,26)(10,24,75,31)(11,21,76,28)(12,18,77,25)(13,23,78,30)(14,20,79,27)(15,17,80,32)(16,22,73,29)(33,50,71,43)(34,55,72,48)(35,52,65,45)(36,49,66,42)(37,54,67,47)(38,51,68,44)(39,56,69,41)(40,53,70,46)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,63)(2,60)(3,57)(4,62)(5,59)(6,64)(7,61)(8,58)(9,47)(10,44)(11,41)(12,46)(13,43)(14,48)(15,45)(16,42)(17,39)(18,36)(19,33)(20,38)(21,35)(22,40)(23,37)(24,34)(25,66)(26,71)(27,68)(28,65)(29,70)(30,67)(31,72)(32,69)(49,73)(50,78)(51,75)(52,80)(53,77)(54,74)(55,79)(56,76), (1,14,34,68,75)(2,15,35,69,76)(3,16,36,70,77)(4,9,37,71,78)(5,10,38,72,79)(6,11,39,65,80)(7,12,40,66,73)(8,13,33,67,74)(17,28,52,64,41)(18,29,53,57,42)(19,30,54,58,43)(20,31,55,59,44)(21,32,56,60,45)(22,25,49,61,46)(23,26,50,62,47)(24,27,51,63,48), (1,59,5,63)(2,64,6,60)(3,61,7,57)(4,58,8,62)(9,19,74,26)(10,24,75,31)(11,21,76,28)(12,18,77,25)(13,23,78,30)(14,20,79,27)(15,17,80,32)(16,22,73,29)(33,50,71,43)(34,55,72,48)(35,52,65,45)(36,49,66,42)(37,54,67,47)(38,51,68,44)(39,56,69,41)(40,53,70,46) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,63),(2,60),(3,57),(4,62),(5,59),(6,64),(7,61),(8,58),(9,47),(10,44),(11,41),(12,46),(13,43),(14,48),(15,45),(16,42),(17,39),(18,36),(19,33),(20,38),(21,35),(22,40),(23,37),(24,34),(25,66),(26,71),(27,68),(28,65),(29,70),(30,67),(31,72),(32,69),(49,73),(50,78),(51,75),(52,80),(53,77),(54,74),(55,79),(56,76)], [(1,14,34,68,75),(2,15,35,69,76),(3,16,36,70,77),(4,9,37,71,78),(5,10,38,72,79),(6,11,39,65,80),(7,12,40,66,73),(8,13,33,67,74),(17,28,52,64,41),(18,29,53,57,42),(19,30,54,58,43),(20,31,55,59,44),(21,32,56,60,45),(22,25,49,61,46),(23,26,50,62,47),(24,27,51,63,48)], [(1,59,5,63),(2,64,6,60),(3,61,7,57),(4,58,8,62),(9,19,74,26),(10,24,75,31),(11,21,76,28),(12,18,77,25),(13,23,78,30),(14,20,79,27),(15,17,80,32),(16,22,73,29),(33,50,71,43),(34,55,72,48),(35,52,65,45),(36,49,66,42),(37,54,67,47),(38,51,68,44),(39,56,69,41),(40,53,70,46)]])

50 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F···4N 5 8A8B8C8D8E···8L8M···8T10A10B20A20B20C40A40B40C40D
order122222444444···4588888···88···8101020202040404040
size11255101125510···10422225···510···10484488888

50 irreducible representations

dim11111111111112444448
type+++++++++
imageC1C2C2C2C2C2C4C4C4C4C4C4C4C8○D4F5C2×F5C2×F5C4×F5C4×F5M4(2)⋊5F5
kernelM4(2)⋊5F5C8×F5C8⋊F5D5×M4(2)C2×D5⋊C8D10.C23C8⋊D5C4.Dic5C5×M4(2)D5⋊C8C4⋊F5C2×C5⋊C8C22⋊F5D5M4(2)C8C2×C4C4C22C1
# reps12211142244448121222

Matrix representation of M4(2)⋊5F5 in GL6(𝔽41)

1400000
0270000
0032000
0003200
0000320
0000032
,
0380000
2700000
0040000
0004000
0000400
0000040
,
100000
010000
0040404040
001000
000100
000010
,
0270000
3800000
0040000
0000040
0004000
001111

G:=sub<GL(6,GF(41))| [14,0,0,0,0,0,0,27,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[0,27,0,0,0,0,38,0,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,1,0,0,0,0,40,0,1,0,0,0,40,0,0,1,0,0,40,0,0,0],[0,38,0,0,0,0,27,0,0,0,0,0,0,0,40,0,0,1,0,0,0,0,40,1,0,0,0,0,0,1,0,0,0,40,0,1] >;

M4(2)⋊5F5 in GAP, Magma, Sage, TeX

M_4(2)\rtimes_5F_5
% in TeX

G:=Group("M4(2):5F5");
// GroupNames label

G:=SmallGroup(320,1066);
// by ID

G=gap.SmallGroup(320,1066);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,387,100,136,102,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^5=d^4=1,b*a*b=d*a*d^-1=a^5,a*c=c*a,b*c=c*b,d*b*d^-1=a^4*b,d*c*d^-1=c^3>;
// generators/relations

׿
×
𝔽