Copied to
clipboard

G = C8oD4order 32 = 25

Central product of C8 and D4

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C8oD4, C8oQ8, D4.C4, Q8.C4, C8oM4(2), C8.7C22, M4(2):5C2, C4.12C23, (C2xC8):7C2, C8o(C4oD4), C4.5(C2xC4), C4oD4.3C2, C22.1(C2xC4), C2.7(C22xC4), (C2xC4).25C22, SmallGroup(32,38)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C8oD4
C1C2C4C2xC4C4oD4 — C8oD4
C1C2 — C8oD4
C1C8 — C8oD4
C1C2C2C4 — C8oD4

Generators and relations for C8oD4
 G = < a,b,c | a8=c2=1, b2=a4, ab=ba, ac=ca, cbc=a4b >

Subgroups: 34 in 31 conjugacy classes, 28 normal (7 characteristic)
Quotients: C1, C2, C4, C22, C2xC4, C23, C22xC4, C8oD4
2C2
2C2
2C2

Character table of C8oD4

 class 12A2B2C2D4A4B4C4D4E8A8B8C8D8E8F8G8H8I8J
 size 11222112221111222222
ρ111111111111111111111    trivial
ρ2111-1-1111-1-11111-11-1-1-11    linear of order 2
ρ3111-1-1111-1-1-1-1-1-11-1111-1    linear of order 2
ρ41111111111-1-1-1-1-1-1-1-1-1-1    linear of order 2
ρ511-1-1111-11-1-1-1-1-1-11-1111    linear of order 2
ρ611-11-111-1-11-1-1-1-1111-1-11    linear of order 2
ρ711-11-111-1-111111-1-1-111-1    linear of order 2
ρ811-1-1111-11-111111-11-1-1-1    linear of order 2
ρ9111-11-1-1-1-11-i-iiiii-ii-i-i    linear of order 4
ρ1011-111-1-11-1-1ii-i-i-iiii-i-i    linear of order 4
ρ111111-1-1-1-11-1-i-iii-iii-ii-i    linear of order 4
ρ1211-1-1-1-1-1111ii-i-iii-i-ii-i    linear of order 4
ρ131111-1-1-1-11-1ii-i-ii-i-ii-ii    linear of order 4
ρ1411-1-1-1-1-1111-i-iii-i-iii-ii    linear of order 4
ρ15111-11-1-1-1-11ii-i-i-i-ii-iii    linear of order 4
ρ1611-111-1-11-1-1-i-iiii-i-i-iii    linear of order 4
ρ172-2000-2i2i0008588387000000    complex faithful
ρ182-20002i-2i0008387858000000    complex faithful
ρ192-2000-2i2i0008858783000000    complex faithful
ρ202-20002i-2i0008783885000000    complex faithful

Permutation representations of C8oD4
On 16 points - transitive group 16T16
Generators in S16
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)
(1 7 5 3)(2 8 6 4)(9 11 13 15)(10 12 14 16)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)

G:=sub<Sym(16)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,7,5,3)(2,8,6,4)(9,11,13,15)(10,12,14,16), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16), (1,7,5,3)(2,8,6,4)(9,11,13,15)(10,12,14,16), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16)], [(1,7,5,3),(2,8,6,4),(9,11,13,15),(10,12,14,16)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16)]])

G:=TransitiveGroup(16,16);

C8oD4 is a maximal subgroup of
C8.A4  D4.F5  Q8.F5  C62.(C2xC4)  C12:S3.C4  Dic26.C4  D52.C4
 C8.D2p: D4.C8  C8oD8  C8.26D4  D4.3D4  D4.4D4  D4.5D4  C8oD12  D12.C4 ...
 C4p.C23: D4oC16  Q8oM4(2)  D4oD8  D4oSD16  Q8oD8  D4.Dic3  D4.Dic5  Q8.Dic7 ...
C8oD4 is a maximal quotient of
(C22xC8):C2  C42.6C22  C42.7C22  C8xD4  C8:9D4  C8:6D4  C8xQ8  C8:4Q8  C62.(C2xC4)  C12:S3.C4
 C4p.(C2xC4): C8o2M4(2)  C8oD12  D12.C4  D4.Dic3  D20.3C4  D20.2C4  D4.Dic5  D4.F5 ...

Matrix representation of C8oD4 in GL2(F17) generated by

80
08
,
01
160
,
01
10
G:=sub<GL(2,GF(17))| [8,0,0,8],[0,16,1,0],[0,1,1,0] >;

C8oD4 in GAP, Magma, Sage, TeX

C_8\circ D_4
% in TeX

G:=Group("C8oD4");
// GroupNames label

G:=SmallGroup(32,38);
// by ID

G=gap.SmallGroup(32,38);
# by ID

G:=PCGroup([5,-2,2,2,-2,-2,40,157,58]);
// Polycyclic

G:=Group<a,b,c|a^8=c^2=1,b^2=a^4,a*b=b*a,a*c=c*a,c*b*c=a^4*b>;
// generators/relations

Export

Subgroup lattice of C8oD4 in TeX
Character table of C8oD4 in TeX

׿
x
:
Z
F
o
wr
Q
<