Copied to
clipboard

G = A4×He3order 324 = 22·34

Direct product of A4 and He3

direct product, metabelian, soluble, monomial

Aliases: A4×He3, C62⋊C32, C32⋊A45C3, C321(C3×A4), C221(C3×He3), (C32×A4)⋊3C3, (C3×A4)⋊1C32, C3.6(C32×A4), (C2×C6).5C33, (C22×He3)⋊5C3, SmallGroup(324,130)

Series: Derived Chief Lower central Upper central

C1C2×C6 — A4×He3
C1C22C2×C6C3×A4C32×A4 — A4×He3
C22C2×C6 — A4×He3
C1C3He3

Generators and relations for A4×He3
 G = < a,b,c,d,e,f | a2=b2=c3=d3=e3=f3=1, cac-1=ab=ba, ad=da, ae=ea, af=fa, cbc-1=a, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf-1=de-1, ef=fe >

Subgroups: 520 in 123 conjugacy classes, 39 normal (8 characteristic)
C1, C2, C3, C3, C22, C6, C32, C32, A4, A4, C2×C6, C2×C6, C3×C6, He3, He3, C33, C3×A4, C3×A4, C3×A4, C62, C2×He3, C3×He3, C32⋊A4, C22×He3, C32×A4, A4×He3
Quotients: C1, C3, C32, A4, He3, C33, C3×A4, C3×He3, C32×A4, A4×He3

Smallest permutation representation of A4×He3
On 36 points
Generators in S36
(1 15)(2 34)(3 19)(4 31)(5 17)(6 27)(7 30)(8 22)(9 12)(10 11)(13 14)(16 18)(20 21)(23 24)(25 26)(28 29)(32 33)(35 36)
(1 13)(2 35)(3 20)(4 32)(5 18)(6 25)(7 28)(8 23)(9 10)(11 12)(14 15)(16 17)(19 21)(22 24)(26 27)(29 30)(31 33)(34 36)
(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)(28 29 30)(31 32 33)(34 35 36)
(1 7 6)(2 8 9)(3 5 4)(10 35 23)(11 36 24)(12 34 22)(13 28 25)(14 29 26)(15 30 27)(16 33 21)(17 31 19)(18 32 20)
(1 8 3)(2 4 6)(5 7 9)(10 18 28)(11 16 29)(12 17 30)(13 23 20)(14 24 21)(15 22 19)(25 35 32)(26 36 33)(27 34 31)
(1 5 4)(2 3 9)(6 8 7)(10 35 20)(11 36 21)(12 34 19)(13 18 32)(14 16 33)(15 17 31)(22 30 27)(23 28 25)(24 29 26)

G:=sub<Sym(36)| (1,15)(2,34)(3,19)(4,31)(5,17)(6,27)(7,30)(8,22)(9,12)(10,11)(13,14)(16,18)(20,21)(23,24)(25,26)(28,29)(32,33)(35,36), (1,13)(2,35)(3,20)(4,32)(5,18)(6,25)(7,28)(8,23)(9,10)(11,12)(14,15)(16,17)(19,21)(22,24)(26,27)(29,30)(31,33)(34,36), (10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,7,6)(2,8,9)(3,5,4)(10,35,23)(11,36,24)(12,34,22)(13,28,25)(14,29,26)(15,30,27)(16,33,21)(17,31,19)(18,32,20), (1,8,3)(2,4,6)(5,7,9)(10,18,28)(11,16,29)(12,17,30)(13,23,20)(14,24,21)(15,22,19)(25,35,32)(26,36,33)(27,34,31), (1,5,4)(2,3,9)(6,8,7)(10,35,20)(11,36,21)(12,34,19)(13,18,32)(14,16,33)(15,17,31)(22,30,27)(23,28,25)(24,29,26)>;

G:=Group( (1,15)(2,34)(3,19)(4,31)(5,17)(6,27)(7,30)(8,22)(9,12)(10,11)(13,14)(16,18)(20,21)(23,24)(25,26)(28,29)(32,33)(35,36), (1,13)(2,35)(3,20)(4,32)(5,18)(6,25)(7,28)(8,23)(9,10)(11,12)(14,15)(16,17)(19,21)(22,24)(26,27)(29,30)(31,33)(34,36), (10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)(31,32,33)(34,35,36), (1,7,6)(2,8,9)(3,5,4)(10,35,23)(11,36,24)(12,34,22)(13,28,25)(14,29,26)(15,30,27)(16,33,21)(17,31,19)(18,32,20), (1,8,3)(2,4,6)(5,7,9)(10,18,28)(11,16,29)(12,17,30)(13,23,20)(14,24,21)(15,22,19)(25,35,32)(26,36,33)(27,34,31), (1,5,4)(2,3,9)(6,8,7)(10,35,20)(11,36,21)(12,34,19)(13,18,32)(14,16,33)(15,17,31)(22,30,27)(23,28,25)(24,29,26) );

G=PermutationGroup([[(1,15),(2,34),(3,19),(4,31),(5,17),(6,27),(7,30),(8,22),(9,12),(10,11),(13,14),(16,18),(20,21),(23,24),(25,26),(28,29),(32,33),(35,36)], [(1,13),(2,35),(3,20),(4,32),(5,18),(6,25),(7,28),(8,23),(9,10),(11,12),(14,15),(16,17),(19,21),(22,24),(26,27),(29,30),(31,33),(34,36)], [(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27),(28,29,30),(31,32,33),(34,35,36)], [(1,7,6),(2,8,9),(3,5,4),(10,35,23),(11,36,24),(12,34,22),(13,28,25),(14,29,26),(15,30,27),(16,33,21),(17,31,19),(18,32,20)], [(1,8,3),(2,4,6),(5,7,9),(10,18,28),(11,16,29),(12,17,30),(13,23,20),(14,24,21),(15,22,19),(25,35,32),(26,36,33),(27,34,31)], [(1,5,4),(2,3,9),(6,8,7),(10,35,20),(11,36,21),(12,34,19),(13,18,32),(14,16,33),(15,17,31),(22,30,27),(23,28,25),(24,29,26)]])

44 conjugacy classes

class 1  2 3A3B3C···3J3K···3P3Q···3AF6A6B6C···6J
order12333···33···33···3666···6
size13113···34···412···12339···9

44 irreducible representations

dim11113339
type++
imageC1C3C3C3A4He3C3×A4A4×He3
kernelA4×He3C32⋊A4C22×He3C32×A4He3A4C32C1
# reps116281682

Matrix representation of A4×He3 in GL6(𝔽7)

061000
060000
160000
000100
000010
000001
,
600000
601000
610000
000100
000010
000001
,
010000
001000
100000
000100
000010
000001
,
200000
020000
002000
000510
000300
000202
,
100000
010000
001000
000400
000040
000004
,
200000
020000
002000
000522
000305
000202

G:=sub<GL(6,GF(7))| [0,0,1,0,0,0,6,6,6,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[6,6,6,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,5,3,2,0,0,0,1,0,0,0,0,0,0,0,2],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,5,3,2,0,0,0,2,0,0,0,0,0,2,5,2] >;

A4×He3 in GAP, Magma, Sage, TeX

A_4\times {\rm He}_3
% in TeX

G:=Group("A4xHe3");
// GroupNames label

G:=SmallGroup(324,130);
// by ID

G=gap.SmallGroup(324,130);
# by ID

G:=PCGroup([6,-3,-3,-3,-3,-2,2,224,4864,8753]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^3=d^3=e^3=f^3=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,a*f=f*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f^-1=d*e^-1,e*f=f*e>;
// generators/relations

׿
×
𝔽