Copied to
clipboard

G = He3.3C12order 324 = 22·34

The non-split extension by He3 of C12 acting via C12/C3=C4

non-abelian, soluble

Aliases: He3.3C12, C9○He3⋊C4, He3⋊C4.C3, C9.(C32⋊C4), He3⋊C2.3C6, He3.4C6.C2, C3.3(C3×C32⋊C4), SmallGroup(324,111)

Series: Derived Chief Lower central Upper central

C1C3He3 — He3.3C12
C1C3He3He3⋊C2He3.4C6 — He3.3C12
He3 — He3.3C12
C1C9

Generators and relations for He3.3C12
 G = < a,b,c,d | a3=b3=c3=1, d12=b, ab=ba, cac-1=ab-1, dad-1=abc, bc=cb, bd=db, dcd-1=ac-1 >

9C2
6C3
6C3
9C4
6S3
6S3
9C6
2C32
2C32
4C9
4C9
9C12
6C3×S3
6C3×S3
9C18
2C3×C9
2C3×C9
43- 1+2
43- 1+2
9C36
6S3×C9
6S3×C9

Smallest permutation representation of He3.3C12
On 54 points
Generators in S54
(1 51 21)(2 40 46)(3 35 41)(4 24 30)(5 19 25)(6 44 50)(7 39 45)(8 28 34)(9 23 29)(10 48 54)(11 43 49)(12 32 38)(13 27 33)(14 52 22)(15 47 53)(16 36 42)(17 31 37)(18 20 26)
(1 13 7)(2 14 8)(3 15 9)(4 16 10)(5 17 11)(6 18 12)(19 31 43)(20 32 44)(21 33 45)(22 34 46)(23 35 47)(24 36 48)(25 37 49)(26 38 50)(27 39 51)(28 40 52)(29 41 53)(30 42 54)
(2 40 22)(4 24 42)(6 44 26)(8 28 46)(10 48 30)(12 32 50)(14 52 34)(16 36 54)(18 20 38)(19 31 43)(21 45 33)(23 35 47)(25 49 37)(27 39 51)(29 53 41)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)

G:=sub<Sym(54)| (1,51,21)(2,40,46)(3,35,41)(4,24,30)(5,19,25)(6,44,50)(7,39,45)(8,28,34)(9,23,29)(10,48,54)(11,43,49)(12,32,38)(13,27,33)(14,52,22)(15,47,53)(16,36,42)(17,31,37)(18,20,26), (1,13,7)(2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12)(19,31,43)(20,32,44)(21,33,45)(22,34,46)(23,35,47)(24,36,48)(25,37,49)(26,38,50)(27,39,51)(28,40,52)(29,41,53)(30,42,54), (2,40,22)(4,24,42)(6,44,26)(8,28,46)(10,48,30)(12,32,50)(14,52,34)(16,36,54)(18,20,38)(19,31,43)(21,45,33)(23,35,47)(25,49,37)(27,39,51)(29,53,41), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)>;

G:=Group( (1,51,21)(2,40,46)(3,35,41)(4,24,30)(5,19,25)(6,44,50)(7,39,45)(8,28,34)(9,23,29)(10,48,54)(11,43,49)(12,32,38)(13,27,33)(14,52,22)(15,47,53)(16,36,42)(17,31,37)(18,20,26), (1,13,7)(2,14,8)(3,15,9)(4,16,10)(5,17,11)(6,18,12)(19,31,43)(20,32,44)(21,33,45)(22,34,46)(23,35,47)(24,36,48)(25,37,49)(26,38,50)(27,39,51)(28,40,52)(29,41,53)(30,42,54), (2,40,22)(4,24,42)(6,44,26)(8,28,46)(10,48,30)(12,32,50)(14,52,34)(16,36,54)(18,20,38)(19,31,43)(21,45,33)(23,35,47)(25,49,37)(27,39,51)(29,53,41), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54) );

G=PermutationGroup([[(1,51,21),(2,40,46),(3,35,41),(4,24,30),(5,19,25),(6,44,50),(7,39,45),(8,28,34),(9,23,29),(10,48,54),(11,43,49),(12,32,38),(13,27,33),(14,52,22),(15,47,53),(16,36,42),(17,31,37),(18,20,26)], [(1,13,7),(2,14,8),(3,15,9),(4,16,10),(5,17,11),(6,18,12),(19,31,43),(20,32,44),(21,33,45),(22,34,46),(23,35,47),(24,36,48),(25,37,49),(26,38,50),(27,39,51),(28,40,52),(29,41,53),(30,42,54)], [(2,40,22),(4,24,42),(6,44,26),(8,28,46),(10,48,30),(12,32,50),(14,52,34),(16,36,54),(18,20,38),(19,31,43),(21,45,33),(23,35,47),(25,49,37),(27,39,51),(29,53,41)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)]])

42 conjugacy classes

class 1  2 3A3B3C3D4A4B6A6B9A···9F9G9H9I9J12A12B12C12D18A···18F36A···36L
order12333344669···999991212121218···1836···36
size1911121299991···11212121299999···99···9

42 irreducible representations

dim111111344
type+++
imageC1C2C3C4C6C12He3.3C12C32⋊C4C3×C32⋊C4
kernelHe3.3C12He3.4C6He3⋊C4C9○He3He3⋊C2He3C1C9C3
# reps1122242424

Matrix representation of He3.3C12 in GL3(𝔽37) generated by

010
001
100
,
1000
0100
0010
,
100
0260
0010
,
171722
172217
352222
G:=sub<GL(3,GF(37))| [0,0,1,1,0,0,0,1,0],[10,0,0,0,10,0,0,0,10],[1,0,0,0,26,0,0,0,10],[17,17,35,17,22,22,22,17,22] >;

He3.3C12 in GAP, Magma, Sage, TeX

{\rm He}_3._3C_{12}
% in TeX

G:=Group("He3.3C12");
// GroupNames label

G:=SmallGroup(324,111);
// by ID

G=gap.SmallGroup(324,111);
# by ID

G:=PCGroup([6,-2,-3,-2,-3,3,-3,36,655,2019,111,2884,916,382]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^3=1,d^12=b,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a*b*c,b*c=c*b,b*d=d*b,d*c*d^-1=a*c^-1>;
// generators/relations

Export

Subgroup lattice of He3.3C12 in TeX

׿
×
𝔽