Extensions 1→N→G→Q→1 with N=He3 and Q=C12

Direct product G=N×Q with N=He3 and Q=C12
dρLabelID
C12×He3108C12xHe3324,106

Semidirect products G=N:Q with N=He3 and Q=C12
extensionφ:Q→Out NdρLabelID
He3⋊C12 = He3⋊C12φ: C12/C2C6 ⊆ Out He3363He3:C12324,13
He32C12 = C3×He3⋊C4φ: C12/C3C4 ⊆ Out He354He3:2C12324,110
He33C12 = C4×C3≀C3φ: C12/C4C3 ⊆ Out He3363He3:3C12324,31
He34C12 = C4×He3⋊C3φ: C12/C4C3 ⊆ Out He31083He3:4C12324,33
He35C12 = C3×C32⋊C12φ: C12/C6C2 ⊆ Out He3366He3:5C12324,92
He36C12 = C3×He33C4φ: C12/C6C2 ⊆ Out He3108He3:6C12324,99

Non-split extensions G=N.Q with N=He3 and Q=C12
extensionφ:Q→Out NdρLabelID
He3.1C12 = He3.C12φ: C12/C2C6 ⊆ Out He31083He3.1C12324,15
He3.2C12 = He3.2C12φ: C12/C2C6 ⊆ Out He31083He3.2C12324,17
He3.3C12 = He3.3C12φ: C12/C3C4 ⊆ Out He3543He3.3C12324,111
He3.4C12 = C4×He3.C3φ: C12/C4C3 ⊆ Out He31083He3.4C12324,32
He3.5C12 = He3.5C12φ: C12/C6C2 ⊆ Out He31083He3.5C12324,102
He3.6C12 = C4×C9○He3φ: trivial image1083He3.6C12324,108

׿
×
𝔽