Extensions 1→N→G→Q→1 with N=C3×C9 and Q=Dic3

Direct product G=N×Q with N=C3×C9 and Q=Dic3
dρLabelID
Dic3×C3×C9108Dic3xC3xC9324,91

Semidirect products G=N:Q with N=C3×C9 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C3×C9)⋊1Dic3 = C32⋊C36φ: Dic3/C2S3 ⊆ Aut C3×C9366(C3xC9):1Dic3324,7
(C3×C9)⋊2Dic3 = He3.C12φ: Dic3/C2S3 ⊆ Aut C3×C91083(C3xC9):2Dic3324,15
(C3×C9)⋊3Dic3 = He3.2C12φ: Dic3/C2S3 ⊆ Aut C3×C91083(C3xC9):3Dic3324,17
(C3×C9)⋊4Dic3 = C322Dic9φ: Dic3/C2S3 ⊆ Aut C3×C9366(C3xC9):4Dic3324,20
(C3×C9)⋊5Dic3 = He3.3Dic3φ: Dic3/C2S3 ⊆ Aut C3×C91086-(C3xC9):5Dic3324,23
(C3×C9)⋊6Dic3 = He3⋊Dic3φ: Dic3/C2S3 ⊆ Aut C3×C91086-(C3xC9):6Dic3324,24
(C3×C9)⋊7Dic3 = He3.4Dic3φ: Dic3/C2S3 ⊆ Aut C3×C91086-(C3xC9):7Dic3324,101
(C3×C9)⋊8Dic3 = He3.5C12φ: Dic3/C2S3 ⊆ Aut C3×C91083(C3xC9):8Dic3324,102
(C3×C9)⋊9Dic3 = C9×C3⋊Dic3φ: Dic3/C6C2 ⊆ Aut C3×C9108(C3xC9):9Dic3324,97
(C3×C9)⋊10Dic3 = C3×C9⋊Dic3φ: Dic3/C6C2 ⊆ Aut C3×C9108(C3xC9):10Dic3324,96
(C3×C9)⋊11Dic3 = C325Dic9φ: Dic3/C6C2 ⊆ Aut C3×C9324(C3xC9):11Dic3324,103

Non-split extensions G=N.Q with N=C3×C9 and Q=Dic3
extensionφ:Q→Aut NdρLabelID
(C3×C9).1Dic3 = C9⋊C36φ: Dic3/C2S3 ⊆ Aut C3×C9366(C3xC9).1Dic3324,9
(C3×C9).2Dic3 = 3- 1+2.Dic3φ: Dic3/C2S3 ⊆ Aut C3×C91086-(C3xC9).2Dic3324,25
(C3×C9).3Dic3 = C27⋊C12φ: Dic3/C2S3 ⊆ Aut C3×C91086-(C3xC9).3Dic3324,12
(C3×C9).4Dic3 = C9×Dic9φ: Dic3/C6C2 ⊆ Aut C3×C9362(C3xC9).4Dic3324,6
(C3×C9).5Dic3 = C3×Dic27φ: Dic3/C6C2 ⊆ Aut C3×C91082(C3xC9).5Dic3324,10
(C3×C9).6Dic3 = C9⋊Dic9φ: Dic3/C6C2 ⊆ Aut C3×C9324(C3xC9).6Dic3324,19
(C3×C9).7Dic3 = C27⋊Dic3φ: Dic3/C6C2 ⊆ Aut C3×C9324(C3xC9).7Dic3324,21

׿
×
𝔽