extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C9)⋊1Dic3 = C32⋊C36 | φ: Dic3/C2 → S3 ⊆ Aut C3×C9 | 36 | 6 | (C3xC9):1Dic3 | 324,7 |
(C3×C9)⋊2Dic3 = He3.C12 | φ: Dic3/C2 → S3 ⊆ Aut C3×C9 | 108 | 3 | (C3xC9):2Dic3 | 324,15 |
(C3×C9)⋊3Dic3 = He3.2C12 | φ: Dic3/C2 → S3 ⊆ Aut C3×C9 | 108 | 3 | (C3xC9):3Dic3 | 324,17 |
(C3×C9)⋊4Dic3 = C32⋊2Dic9 | φ: Dic3/C2 → S3 ⊆ Aut C3×C9 | 36 | 6 | (C3xC9):4Dic3 | 324,20 |
(C3×C9)⋊5Dic3 = He3.3Dic3 | φ: Dic3/C2 → S3 ⊆ Aut C3×C9 | 108 | 6- | (C3xC9):5Dic3 | 324,23 |
(C3×C9)⋊6Dic3 = He3⋊Dic3 | φ: Dic3/C2 → S3 ⊆ Aut C3×C9 | 108 | 6- | (C3xC9):6Dic3 | 324,24 |
(C3×C9)⋊7Dic3 = He3.4Dic3 | φ: Dic3/C2 → S3 ⊆ Aut C3×C9 | 108 | 6- | (C3xC9):7Dic3 | 324,101 |
(C3×C9)⋊8Dic3 = He3.5C12 | φ: Dic3/C2 → S3 ⊆ Aut C3×C9 | 108 | 3 | (C3xC9):8Dic3 | 324,102 |
(C3×C9)⋊9Dic3 = C9×C3⋊Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C3×C9 | 108 | | (C3xC9):9Dic3 | 324,97 |
(C3×C9)⋊10Dic3 = C3×C9⋊Dic3 | φ: Dic3/C6 → C2 ⊆ Aut C3×C9 | 108 | | (C3xC9):10Dic3 | 324,96 |
(C3×C9)⋊11Dic3 = C32⋊5Dic9 | φ: Dic3/C6 → C2 ⊆ Aut C3×C9 | 324 | | (C3xC9):11Dic3 | 324,103 |