extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C9)⋊(C2×C6) = S3×C9⋊C6 | φ: C2×C6/C1 → C2×C6 ⊆ Aut C3×C9 | 18 | 12+ | (C3xC9):(C2xC6) | 324,118 |
(C3×C9)⋊2(C2×C6) = C2×C32⋊D9 | φ: C2×C6/C2 → C6 ⊆ Aut C3×C9 | 54 | | (C3xC9):2(C2xC6) | 324,63 |
(C3×C9)⋊3(C2×C6) = C2×He3.S3 | φ: C2×C6/C2 → C6 ⊆ Aut C3×C9 | 54 | 6+ | (C3xC9):3(C2xC6) | 324,71 |
(C3×C9)⋊4(C2×C6) = C2×He3.2S3 | φ: C2×C6/C2 → C6 ⊆ Aut C3×C9 | 54 | 6+ | (C3xC9):4(C2xC6) | 324,73 |
(C3×C9)⋊5(C2×C6) = C6×C9⋊C6 | φ: C2×C6/C2 → C6 ⊆ Aut C3×C9 | 36 | 6 | (C3xC9):5(C2xC6) | 324,140 |
(C3×C9)⋊6(C2×C6) = C2×C33.S3 | φ: C2×C6/C2 → C6 ⊆ Aut C3×C9 | 54 | | (C3xC9):6(C2xC6) | 324,146 |
(C3×C9)⋊7(C2×C6) = C2×He3.4S3 | φ: C2×C6/C2 → C6 ⊆ Aut C3×C9 | 54 | 6+ | (C3xC9):7(C2xC6) | 324,147 |
(C3×C9)⋊8(C2×C6) = C2×S3×3- 1+2 | φ: C2×C6/C2 → C6 ⊆ Aut C3×C9 | 36 | 6 | (C3xC9):8(C2xC6) | 324,141 |
(C3×C9)⋊9(C2×C6) = C3×S3×D9 | φ: C2×C6/C3 → C22 ⊆ Aut C3×C9 | 36 | 4 | (C3xC9):9(C2xC6) | 324,114 |
(C3×C9)⋊10(C2×C6) = C22×C32⋊C9 | φ: C2×C6/C22 → C3 ⊆ Aut C3×C9 | 108 | | (C3xC9):10(C2xC6) | 324,82 |
(C3×C9)⋊11(C2×C6) = C22×He3.C3 | φ: C2×C6/C22 → C3 ⊆ Aut C3×C9 | 108 | | (C3xC9):11(C2xC6) | 324,87 |
(C3×C9)⋊12(C2×C6) = C22×He3⋊C3 | φ: C2×C6/C22 → C3 ⊆ Aut C3×C9 | 108 | | (C3xC9):12(C2xC6) | 324,88 |
(C3×C9)⋊13(C2×C6) = C2×C6×3- 1+2 | φ: C2×C6/C22 → C3 ⊆ Aut C3×C9 | 108 | | (C3xC9):13(C2xC6) | 324,153 |
(C3×C9)⋊14(C2×C6) = C22×C9○He3 | φ: C2×C6/C22 → C3 ⊆ Aut C3×C9 | 108 | | (C3xC9):14(C2xC6) | 324,154 |
(C3×C9)⋊15(C2×C6) = S3×C3×C18 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C9 | 108 | | (C3xC9):15(C2xC6) | 324,137 |
(C3×C9)⋊16(C2×C6) = D9×C3×C6 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C9 | 108 | | (C3xC9):16(C2xC6) | 324,136 |
(C3×C9)⋊17(C2×C6) = C6×C9⋊S3 | φ: C2×C6/C6 → C2 ⊆ Aut C3×C9 | 108 | | (C3xC9):17(C2xC6) | 324,142 |