Extensions 1→N→G→Q→1 with N=C9 and Q=C3×Dic3

Direct product G=N×Q with N=C9 and Q=C3×Dic3
dρLabelID
Dic3×C3×C9108Dic3xC3xC9324,91

Semidirect products G=N:Q with N=C9 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C9⋊(C3×Dic3) = C33.Dic3φ: C3×Dic3/C6C6 ⊆ Aut C9108C9:(C3xDic3)324,100
C92(C3×Dic3) = Dic3×3- 1+2φ: C3×Dic3/Dic3C3 ⊆ Aut C9366C9:2(C3xDic3)324,95
C93(C3×Dic3) = C3×C9⋊Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C9108C9:3(C3xDic3)324,96

Non-split extensions G=N.Q with N=C9 and Q=C3×Dic3
extensionφ:Q→Aut NdρLabelID
C9.1(C3×Dic3) = C3×Dic27φ: C3×Dic3/C3×C6C2 ⊆ Aut C91082C9.1(C3xDic3)324,10
C9.2(C3×Dic3) = C27⋊C12φ: C3×Dic3/C3×C6C2 ⊆ Aut C91086-C9.2(C3xDic3)324,12
C9.3(C3×Dic3) = He3.4Dic3φ: C3×Dic3/C3×C6C2 ⊆ Aut C91086-C9.3(C3xDic3)324,101
C9.4(C3×Dic3) = Dic3×C27central extension (φ=1)1082C9.4(C3xDic3)324,11

׿
×
𝔽