d | ρ | Label | ID | ||
---|---|---|---|---|---|
Dic3×C3×C9 | 108 | Dic3xC3xC9 | 324,91 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C9⋊(C3×Dic3) = C33.Dic3 | φ: C3×Dic3/C6 → C6 ⊆ Aut C9 | 108 | C9:(C3xDic3) | 324,100 | |
C9⋊2(C3×Dic3) = Dic3×3- 1+2 | φ: C3×Dic3/Dic3 → C3 ⊆ Aut C9 | 36 | 6 | C9:2(C3xDic3) | 324,95 |
C9⋊3(C3×Dic3) = C3×C9⋊Dic3 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C9 | 108 | C9:3(C3xDic3) | 324,96 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C9.1(C3×Dic3) = C3×Dic27 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C9 | 108 | 2 | C9.1(C3xDic3) | 324,10 |
C9.2(C3×Dic3) = C27⋊C12 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C9 | 108 | 6- | C9.2(C3xDic3) | 324,12 |
C9.3(C3×Dic3) = He3.4Dic3 | φ: C3×Dic3/C3×C6 → C2 ⊆ Aut C9 | 108 | 6- | C9.3(C3xDic3) | 324,101 |
C9.4(C3×Dic3) = Dic3×C27 | central extension (φ=1) | 108 | 2 | C9.4(C3xDic3) | 324,11 |