Extensions 1→N→G→Q→1 with N=C6 and Q=D28

Direct product G=N×Q with N=C6 and Q=D28
dρLabelID
C6×D28168C6xD28336,176

Semidirect products G=N:Q with N=C6 and Q=D28
extensionφ:Q→Aut NdρLabelID
C61D28 = C2×D84φ: D28/C28C2 ⊆ Aut C6168C6:1D28336,196
C62D28 = C2×C3⋊D28φ: D28/D14C2 ⊆ Aut C6168C6:2D28336,158

Non-split extensions G=N.Q with N=C6 and Q=D28
extensionφ:Q→Aut NdρLabelID
C6.1D28 = C8⋊D21φ: D28/C28C2 ⊆ Aut C61682C6.1D28336,92
C6.2D28 = D168φ: D28/C28C2 ⊆ Aut C61682+C6.2D28336,93
C6.3D28 = Dic84φ: D28/C28C2 ⊆ Aut C63362-C6.3D28336,94
C6.4D28 = C84⋊C4φ: D28/C28C2 ⊆ Aut C6336C6.4D28336,99
C6.5D28 = C2.D84φ: D28/C28C2 ⊆ Aut C6168C6.5D28336,100
C6.6D28 = C3⋊D56φ: D28/D14C2 ⊆ Aut C61684+C6.6D28336,30
C6.7D28 = C6.D28φ: D28/D14C2 ⊆ Aut C61684-C6.7D28336,34
C6.8D28 = C21⋊SD16φ: D28/D14C2 ⊆ Aut C61684+C6.8D28336,35
C6.9D28 = C3⋊Dic28φ: D28/D14C2 ⊆ Aut C63364-C6.9D28336,39
C6.10D28 = D14⋊Dic3φ: D28/D14C2 ⊆ Aut C6168C6.10D28336,42
C6.11D28 = D42⋊C4φ: D28/D14C2 ⊆ Aut C6168C6.11D28336,44
C6.12D28 = C14.Dic6φ: D28/D14C2 ⊆ Aut C6336C6.12D28336,47
C6.13D28 = C3×C56⋊C2central extension (φ=1)1682C6.13D28336,60
C6.14D28 = C3×D56central extension (φ=1)1682C6.14D28336,61
C6.15D28 = C3×Dic28central extension (φ=1)3362C6.15D28336,62
C6.16D28 = C3×C4⋊Dic7central extension (φ=1)336C6.16D28336,67
C6.17D28 = C3×D14⋊C4central extension (φ=1)168C6.17D28336,68

׿
×
𝔽