Extensions 1→N→G→Q→1 with N=C4 and Q=C2×F7

Direct product G=N×Q with N=C4 and Q=C2×F7
dρLabelID
C2×C4×F756C2xC4xF7336,122

Semidirect products G=N:Q with N=C4 and Q=C2×F7
extensionφ:Q→Aut NdρLabelID
C41(C2×F7) = D4×F7φ: C2×F7/F7C2 ⊆ Aut C42812+C4:1(C2xF7)336,125
C42(C2×F7) = C2×C4⋊F7φ: C2×F7/C2×C7⋊C3C2 ⊆ Aut C456C4:2(C2xF7)336,123

Non-split extensions G=N.Q with N=C4 and Q=C2×F7
extensionφ:Q→Aut NdρLabelID
C4.1(C2×F7) = D4⋊F7φ: C2×F7/F7C2 ⊆ Aut C45612+C4.1(C2xF7)336,18
C4.2(C2×F7) = D4.F7φ: C2×F7/F7C2 ⊆ Aut C45612-C4.2(C2xF7)336,19
C4.3(C2×F7) = Q82F7φ: C2×F7/F7C2 ⊆ Aut C45612+C4.3(C2xF7)336,20
C4.4(C2×F7) = Q8.2F7φ: C2×F7/F7C2 ⊆ Aut C411212-C4.4(C2xF7)336,21
C4.5(C2×F7) = D42F7φ: C2×F7/F7C2 ⊆ Aut C45612-C4.5(C2xF7)336,126
C4.6(C2×F7) = Q8×F7φ: C2×F7/F7C2 ⊆ Aut C45612-C4.6(C2xF7)336,127
C4.7(C2×F7) = Q83F7φ: C2×F7/F7C2 ⊆ Aut C45612+C4.7(C2xF7)336,128
C4.8(C2×F7) = C56⋊C6φ: C2×F7/C2×C7⋊C3C2 ⊆ Aut C4566C4.8(C2xF7)336,9
C4.9(C2×F7) = D56⋊C3φ: C2×F7/C2×C7⋊C3C2 ⊆ Aut C4566+C4.9(C2xF7)336,10
C4.10(C2×F7) = C8.F7φ: C2×F7/C2×C7⋊C3C2 ⊆ Aut C41126-C4.10(C2xF7)336,11
C4.11(C2×F7) = C2×C4.F7φ: C2×F7/C2×C7⋊C3C2 ⊆ Aut C4112C4.11(C2xF7)336,121
C4.12(C2×F7) = C8×F7central extension (φ=1)566C4.12(C2xF7)336,7
C4.13(C2×F7) = C8⋊F7central extension (φ=1)566C4.13(C2xF7)336,8
C4.14(C2×F7) = C2×C7⋊C24central extension (φ=1)112C4.14(C2xF7)336,12
C4.15(C2×F7) = C28.C12central extension (φ=1)566C4.15(C2xF7)336,13
C4.16(C2×F7) = D286C6central extension (φ=1)566C4.16(C2xF7)336,124

׿
×
𝔽