Copied to
clipboard

G = D56⋊C3order 336 = 24·3·7

The semidirect product of D56 and C3 acting faithfully

metacyclic, supersoluble, monomial

Aliases: D56⋊C3, C81F7, C561C6, D284C6, C7⋊C31D8, C71(C3×D8), C4⋊F74C2, C4.9(C2×F7), C28.9(C2×C6), C14.2(C3×D4), C2.4(C4⋊F7), (C8×C7⋊C3)⋊1C2, (C2×C7⋊C3).2D4, (C4×C7⋊C3).9C22, SmallGroup(336,10)

Series: Derived Chief Lower central Upper central

C1C28 — D56⋊C3
C1C7C14C28C4×C7⋊C3C4⋊F7 — D56⋊C3
C7C14C28 — D56⋊C3
C1C2C4C8

Generators and relations for D56⋊C3
 G = < a,b,c | a56=b2=c3=1, bab=a-1, cac-1=a9, cbc-1=a8b >

28C2
28C2
7C3
14C22
14C22
7C6
28C6
28C6
4D7
4D7
7D4
7D4
7C12
14C2×C6
14C2×C6
2D14
2D14
4F7
4F7
7D8
7C24
7C3×D4
7C3×D4
2C2×F7
2C2×F7
7C3×D8

Character table of D56⋊C3

 class 12A2B2C3A3B46A6B6C6D6E6F78A8B12A12B1424A24B24C24D28A28B56A56B56C56D
 size 11282877277282828286221414614141414666666
ρ111111111111111111111111111111    trivial
ρ211-1-111111-1-1-1-11111111111111111    linear of order 2
ρ3111-1111111-11-11-1-1111-1-1-1-111-1-1-1-1    linear of order 2
ρ411-1111111-11-111-1-1111-1-1-1-111-1-1-1-1    linear of order 2
ρ511-11ζ3ζ321ζ32ζ3ζ65ζ32ζ6ζ31-1-1ζ3ζ321ζ6ζ6ζ65ζ6511-1-1-1-1    linear of order 6
ρ6111-1ζ3ζ321ζ32ζ3ζ3ζ6ζ32ζ651-1-1ζ3ζ321ζ6ζ6ζ65ζ6511-1-1-1-1    linear of order 6
ρ711-1-1ζ32ζ31ζ3ζ32ζ6ζ65ζ65ζ6111ζ32ζ31ζ3ζ3ζ32ζ32111111    linear of order 6
ρ811-11ζ32ζ31ζ3ζ32ζ6ζ3ζ65ζ321-1-1ζ32ζ31ζ65ζ65ζ6ζ611-1-1-1-1    linear of order 6
ρ911-1-1ζ3ζ321ζ32ζ3ζ65ζ6ζ6ζ65111ζ3ζ321ζ32ζ32ζ3ζ3111111    linear of order 6
ρ10111-1ζ32ζ31ζ3ζ32ζ32ζ65ζ3ζ61-1-1ζ32ζ31ζ65ζ65ζ6ζ611-1-1-1-1    linear of order 6
ρ111111ζ32ζ31ζ3ζ32ζ32ζ3ζ3ζ32111ζ32ζ31ζ3ζ3ζ32ζ32111111    linear of order 3
ρ121111ζ3ζ321ζ32ζ3ζ3ζ32ζ32ζ3111ζ3ζ321ζ32ζ32ζ3ζ3111111    linear of order 3
ρ13220022-2220000200-2-220000-2-20000    orthogonal lifted from D4
ρ142-200220-2-200002-2200-22-22-200-222-2    orthogonal lifted from D8
ρ152-200220-2-2000022-200-2-22-22002-2-22    orthogonal lifted from D8
ρ162200-1+-3-1--3-2-1--3-1+-300002001--31+-320000-2-20000    complex lifted from C3×D4
ρ172200-1--3-1+-3-2-1+-3-1--300002001+-31--320000-2-20000    complex lifted from C3×D4
ρ182-200-1--3-1+-301--31+-300002-2200-283ζ38ζ387ζ385ζ383ζ328ζ3287ζ3285ζ3200-222-2    complex lifted from C3×D8
ρ192-200-1--3-1+-301--31+-3000022-200-287ζ385ζ383ζ38ζ387ζ3285ζ3283ζ328ζ32002-2-22    complex lifted from C3×D8
ρ202-200-1+-3-1--301+-31--3000022-200-287ζ3285ζ3283ζ328ζ3287ζ385ζ383ζ38ζ3002-2-22    complex lifted from C3×D8
ρ212-200-1+-3-1--301+-31--300002-2200-283ζ328ζ3287ζ3285ζ3283ζ38ζ387ζ385ζ300-222-2    complex lifted from C3×D8
ρ226600006000000-16600-10000-1-1-1-1-1-1    orthogonal lifted from F7
ρ236600006000000-1-6-600-10000-1-11111    orthogonal lifted from C2×F7
ρ24660000-6000000-10000-100001177-7-7    orthogonal lifted from C4⋊F7
ρ25660000-6000000-10000-1000011-7-777    orthogonal lifted from C4⋊F7
ρ266-600000000000-132-3200100007-7ζ83ζ7483ζ7283ζ7838ζ748ζ728ζ7ζ83ζ7683ζ7583ζ738ζ768ζ758ζ738ζ87ζ7687ζ7587ζ738785ζ7685ζ7585ζ73ζ87ζ7487ζ7287ζ785ζ7485ζ7285ζ785    orthogonal faithful
ρ276-600000000000-132-320010000-77ζ87ζ7487ζ7287ζ785ζ7485ζ7285ζ785ζ87ζ7687ζ7587ζ738785ζ7685ζ7585ζ73ζ83ζ7683ζ7583ζ738ζ768ζ758ζ738ζ83ζ7483ζ7283ζ7838ζ748ζ728ζ7    orthogonal faithful
ρ286-600000000000-1-32320010000-77ζ87ζ7687ζ7587ζ738785ζ7685ζ7585ζ73ζ87ζ7487ζ7287ζ785ζ7485ζ7285ζ785ζ83ζ7483ζ7283ζ7838ζ748ζ728ζ7ζ83ζ7683ζ7583ζ738ζ768ζ758ζ738    orthogonal faithful
ρ296-600000000000-1-323200100007-7ζ83ζ7683ζ7583ζ738ζ768ζ758ζ738ζ83ζ7483ζ7283ζ7838ζ748ζ728ζ7ζ87ζ7487ζ7287ζ785ζ7485ζ7285ζ785ζ87ζ7687ζ7587ζ738785ζ7685ζ7585ζ73    orthogonal faithful

Smallest permutation representation of D56⋊C3
On 56 points
Generators in S56
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 7)(2 6)(3 5)(8 56)(9 55)(10 54)(11 53)(12 52)(13 51)(14 50)(15 49)(16 48)(17 47)(18 46)(19 45)(20 44)(21 43)(22 42)(23 41)(24 40)(25 39)(26 38)(27 37)(28 36)(29 35)(30 34)(31 33)
(2 26 10)(3 51 19)(4 20 28)(5 45 37)(6 14 46)(7 39 55)(9 33 17)(11 27 35)(12 52 44)(13 21 53)(16 40 24)(18 34 42)(23 47 31)(25 41 49)(30 54 38)(32 48 56)

G:=sub<Sym(56)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33), (2,26,10)(3,51,19)(4,20,28)(5,45,37)(6,14,46)(7,39,55)(9,33,17)(11,27,35)(12,52,44)(13,21,53)(16,40,24)(18,34,42)(23,47,31)(25,41,49)(30,54,38)(32,48,56)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,7)(2,6)(3,5)(8,56)(9,55)(10,54)(11,53)(12,52)(13,51)(14,50)(15,49)(16,48)(17,47)(18,46)(19,45)(20,44)(21,43)(22,42)(23,41)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33), (2,26,10)(3,51,19)(4,20,28)(5,45,37)(6,14,46)(7,39,55)(9,33,17)(11,27,35)(12,52,44)(13,21,53)(16,40,24)(18,34,42)(23,47,31)(25,41,49)(30,54,38)(32,48,56) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,7),(2,6),(3,5),(8,56),(9,55),(10,54),(11,53),(12,52),(13,51),(14,50),(15,49),(16,48),(17,47),(18,46),(19,45),(20,44),(21,43),(22,42),(23,41),(24,40),(25,39),(26,38),(27,37),(28,36),(29,35),(30,34),(31,33)], [(2,26,10),(3,51,19),(4,20,28),(5,45,37),(6,14,46),(7,39,55),(9,33,17),(11,27,35),(12,52,44),(13,21,53),(16,40,24),(18,34,42),(23,47,31),(25,41,49),(30,54,38),(32,48,56)]])

Matrix representation of D56⋊C3 in GL8(𝔽337)

0100000000
24626000000
00000001
0033600001
0003360001
0000336001
0000033601
0000003361
,
336241000000
01000000
0000001336
0000010336
0000100336
0001000336
0010000336
0000000336
,
2080000000
0208000000
00010000
00000100
00000001
00100000
00001000
00000010

G:=sub<GL(8,GF(337))| [0,246,0,0,0,0,0,0,100,26,0,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,0,0,0,0,0,0,336,0,0,1,1,1,1,1,1],[336,0,0,0,0,0,0,0,241,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,336,336,336,336,336,336],[208,0,0,0,0,0,0,0,0,208,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0] >;

D56⋊C3 in GAP, Magma, Sage, TeX

D_{56}\rtimes C_3
% in TeX

G:=Group("D56:C3");
// GroupNames label

G:=SmallGroup(336,10);
// by ID

G=gap.SmallGroup(336,10);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,169,223,867,69,10373,1745]);
// Polycyclic

G:=Group<a,b,c|a^56=b^2=c^3=1,b*a*b=a^-1,c*a*c^-1=a^9,c*b*c^-1=a^8*b>;
// generators/relations

Export

Subgroup lattice of D56⋊C3 in TeX
Character table of D56⋊C3 in TeX

׿
×
𝔽