Copied to
clipboard

G = C8.F7order 336 = 24·3·7

The non-split extension by C8 of F7 acting via F7/C7⋊C3=C2

metacyclic, supersoluble, monomial

Aliases: C8.F7, Dic28⋊C3, C56.1C6, Dic14.2C6, C7⋊C31Q16, C71(C3×Q16), C14.3(C3×D4), C2.5(C4⋊F7), C4.10(C2×F7), C4.F7.2C2, C28.10(C2×C6), (C8×C7⋊C3).1C2, (C2×C7⋊C3).3D4, (C4×C7⋊C3).10C22, SmallGroup(336,11)

Series: Derived Chief Lower central Upper central

C1C28 — C8.F7
C1C7C14C28C4×C7⋊C3C4.F7 — C8.F7
C7C14C28 — C8.F7
C1C2C4C8

Generators and relations for C8.F7
 G = < a,b,c | a8=b7=1, c6=a4, ab=ba, cac-1=a-1, cbc-1=b5 >

7C3
14C4
14C4
7C6
7Q8
7Q8
7C12
14C12
14C12
2Dic7
2Dic7
7Q16
7C3×Q8
7C3×Q8
7C24
2C7⋊C12
2C7⋊C12
7C3×Q16

Character table of C8.F7

 class 123A3B4A4B4C6A6B78A8B12A12B12C12D12E12F1424A24B24C24D28A28B56A56B56C56D
 size 11772282877622141428282828614141414666666
ρ111111111111111111111111111111    trivial
ρ211111-1-11111111-1-1-1-111111111111    linear of order 2
ρ311111-11111-1-111-11-111-1-1-1-111-1-1-1-1    linear of order 2
ρ4111111-1111-1-1111-11-11-1-1-1-111-1-1-1-1    linear of order 2
ρ511ζ3ζ321-11ζ3ζ321-1-1ζ32ζ3ζ65ζ32ζ6ζ31ζ65ζ6ζ65ζ611-1-1-1-1    linear of order 6
ρ611ζ32ζ3111ζ32ζ3111ζ3ζ32ζ32ζ3ζ3ζ321ζ32ζ3ζ32ζ3111111    linear of order 3
ρ711ζ32ζ31-1-1ζ32ζ3111ζ3ζ32ζ6ζ65ζ65ζ61ζ32ζ3ζ32ζ3111111    linear of order 6
ρ811ζ3ζ32111ζ3ζ32111ζ32ζ3ζ3ζ32ζ32ζ31ζ3ζ32ζ3ζ32111111    linear of order 3
ρ911ζ32ζ311-1ζ32ζ31-1-1ζ3ζ32ζ32ζ65ζ3ζ61ζ6ζ65ζ6ζ6511-1-1-1-1    linear of order 6
ρ1011ζ3ζ3211-1ζ3ζ321-1-1ζ32ζ3ζ3ζ6ζ32ζ651ζ65ζ6ζ65ζ611-1-1-1-1    linear of order 6
ρ1111ζ3ζ321-1-1ζ3ζ32111ζ32ζ3ζ65ζ6ζ6ζ651ζ3ζ32ζ3ζ32111111    linear of order 6
ρ1211ζ32ζ31-11ζ32ζ31-1-1ζ3ζ32ζ6ζ3ζ65ζ321ζ6ζ65ζ6ζ6511-1-1-1-1    linear of order 6
ρ132222-20022200-2-2000020000-2-20000    orthogonal lifted from D4
ρ142-222000-2-222-2000000-22-2-2200-222-2    symplectic lifted from Q16, Schur index 2
ρ152-222000-2-22-22000000-2-222-2002-2-22    symplectic lifted from Q16, Schur index 2
ρ1622-1--3-1+-3-200-1--3-1+-32001--31+-3000020000-2-20000    complex lifted from C3×D4
ρ1722-1+-3-1--3-200-1+-3-1--32001+-31--3000020000-2-20000    complex lifted from C3×D4
ρ182-2-1+-3-1--30001--31+-32-22000000-2ζ83ζ38ζ3ζ87ζ3285ζ32ζ87ζ385ζ3ζ83ζ328ζ32002-2-22    complex lifted from C3×Q16
ρ192-2-1--3-1+-30001+-31--32-22000000-2ζ83ζ328ζ32ζ87ζ385ζ3ζ87ζ3285ζ32ζ83ζ38ζ3002-2-22    complex lifted from C3×Q16
ρ202-2-1--3-1+-30001+-31--322-2000000-2ζ87ζ3285ζ32ζ83ζ38ζ3ζ83ζ328ζ32ζ87ζ385ζ300-222-2    complex lifted from C3×Q16
ρ212-2-1+-3-1--30001--31+-322-2000000-2ζ87ζ385ζ3ζ83ζ328ζ32ζ83ζ38ζ3ζ87ζ3285ζ3200-222-2    complex lifted from C3×Q16
ρ22660060000-166000000-10000-1-1-1-1-1-1    orthogonal lifted from F7
ρ23660060000-1-6-6000000-10000-1-11111    orthogonal lifted from C2×F7
ρ246600-60000-100000000-1000011-7-777    orthogonal lifted from C4⋊F7
ρ256600-60000-100000000-100001177-7-7    orthogonal lifted from C4⋊F7
ρ266-60000000-132-32000000100007-7ζ87ζ7487ζ7287ζ78785ζ7485ζ7285ζ7ζ87ζ7687ζ7587ζ7385ζ7685ζ7585ζ7385ζ83ζ7683ζ7583ζ73838ζ768ζ758ζ73ζ83ζ7483ζ7283ζ78ζ748ζ728ζ78    symplectic faithful, Schur index 2
ρ276-60000000-1-3232000000100007-7ζ87ζ7687ζ7587ζ7385ζ7685ζ7585ζ7385ζ87ζ7487ζ7287ζ78785ζ7485ζ7285ζ7ζ83ζ7483ζ7283ζ78ζ748ζ728ζ78ζ83ζ7683ζ7583ζ73838ζ768ζ758ζ73    symplectic faithful, Schur index 2
ρ286-60000000-132-3200000010000-77ζ83ζ7483ζ7283ζ78ζ748ζ728ζ78ζ83ζ7683ζ7583ζ73838ζ768ζ758ζ73ζ87ζ7687ζ7587ζ7385ζ7685ζ7585ζ7385ζ87ζ7487ζ7287ζ78785ζ7485ζ7285ζ7    symplectic faithful, Schur index 2
ρ296-60000000-1-323200000010000-77ζ83ζ7683ζ7583ζ73838ζ768ζ758ζ73ζ83ζ7483ζ7283ζ78ζ748ζ728ζ78ζ87ζ7487ζ7287ζ78785ζ7485ζ7285ζ7ζ87ζ7687ζ7587ζ7385ζ7685ζ7585ζ7385    symplectic faithful, Schur index 2

Smallest permutation representation of C8.F7
On 112 points
Generators in S112
(1 13 10 7 3 15 12 5)(2 6 9 16 4 8 11 14)(17 38 112 67 23 32 106 73)(18 74 107 33 24 68 101 39)(19 40 102 69 25 34 108 75)(20 76 109 35 26 70 103 29)(21 30 104 71 27 36 110 65)(22 66 111 37 28 72 105 31)(41 100 58 78 47 94 64 84)(42 85 53 95 48 79 59 89)(43 90 60 80 49 96 54 86)(44 87 55 97 50 81 61 91)(45 92 62 82 51 98 56 88)(46 77 57 99 52 83 63 93)
(1 66 74 48 70 52 44)(2 41 49 67 45 71 75)(3 72 68 42 76 46 50)(4 47 43 73 51 65 69)(5 22 18 95 26 99 91)(6 100 96 23 92 27 19)(7 28 24 89 20 93 97)(8 94 90 17 98 21 25)(9 58 54 32 62 36 40)(10 37 33 59 29 63 55)(11 64 60 38 56 30 34)(12 31 39 53 35 57 61)(13 111 107 79 103 83 87)(14 84 80 112 88 104 108)(15 105 101 85 109 77 81)(16 78 86 106 82 110 102)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76)(77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112)

G:=sub<Sym(112)| (1,13,10,7,3,15,12,5)(2,6,9,16,4,8,11,14)(17,38,112,67,23,32,106,73)(18,74,107,33,24,68,101,39)(19,40,102,69,25,34,108,75)(20,76,109,35,26,70,103,29)(21,30,104,71,27,36,110,65)(22,66,111,37,28,72,105,31)(41,100,58,78,47,94,64,84)(42,85,53,95,48,79,59,89)(43,90,60,80,49,96,54,86)(44,87,55,97,50,81,61,91)(45,92,62,82,51,98,56,88)(46,77,57,99,52,83,63,93), (1,66,74,48,70,52,44)(2,41,49,67,45,71,75)(3,72,68,42,76,46,50)(4,47,43,73,51,65,69)(5,22,18,95,26,99,91)(6,100,96,23,92,27,19)(7,28,24,89,20,93,97)(8,94,90,17,98,21,25)(9,58,54,32,62,36,40)(10,37,33,59,29,63,55)(11,64,60,38,56,30,34)(12,31,39,53,35,57,61)(13,111,107,79,103,83,87)(14,84,80,112,88,104,108)(15,105,101,85,109,77,81)(16,78,86,106,82,110,102), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112)>;

G:=Group( (1,13,10,7,3,15,12,5)(2,6,9,16,4,8,11,14)(17,38,112,67,23,32,106,73)(18,74,107,33,24,68,101,39)(19,40,102,69,25,34,108,75)(20,76,109,35,26,70,103,29)(21,30,104,71,27,36,110,65)(22,66,111,37,28,72,105,31)(41,100,58,78,47,94,64,84)(42,85,53,95,48,79,59,89)(43,90,60,80,49,96,54,86)(44,87,55,97,50,81,61,91)(45,92,62,82,51,98,56,88)(46,77,57,99,52,83,63,93), (1,66,74,48,70,52,44)(2,41,49,67,45,71,75)(3,72,68,42,76,46,50)(4,47,43,73,51,65,69)(5,22,18,95,26,99,91)(6,100,96,23,92,27,19)(7,28,24,89,20,93,97)(8,94,90,17,98,21,25)(9,58,54,32,62,36,40)(10,37,33,59,29,63,55)(11,64,60,38,56,30,34)(12,31,39,53,35,57,61)(13,111,107,79,103,83,87)(14,84,80,112,88,104,108)(15,105,101,85,109,77,81)(16,78,86,106,82,110,102), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76)(77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112) );

G=PermutationGroup([[(1,13,10,7,3,15,12,5),(2,6,9,16,4,8,11,14),(17,38,112,67,23,32,106,73),(18,74,107,33,24,68,101,39),(19,40,102,69,25,34,108,75),(20,76,109,35,26,70,103,29),(21,30,104,71,27,36,110,65),(22,66,111,37,28,72,105,31),(41,100,58,78,47,94,64,84),(42,85,53,95,48,79,59,89),(43,90,60,80,49,96,54,86),(44,87,55,97,50,81,61,91),(45,92,62,82,51,98,56,88),(46,77,57,99,52,83,63,93)], [(1,66,74,48,70,52,44),(2,41,49,67,45,71,75),(3,72,68,42,76,46,50),(4,47,43,73,51,65,69),(5,22,18,95,26,99,91),(6,100,96,23,92,27,19),(7,28,24,89,20,93,97),(8,94,90,17,98,21,25),(9,58,54,32,62,36,40),(10,37,33,59,29,63,55),(11,64,60,38,56,30,34),(12,31,39,53,35,57,61),(13,111,107,79,103,83,87),(14,84,80,112,88,104,108),(15,105,101,85,109,77,81),(16,78,86,106,82,110,102)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76),(77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112)]])

Matrix representation of C8.F7 in GL8(𝔽337)

13324000000
1313000000
001734340340
000173434034
0030330332000303
003400173434
0030303033033200
0003030303303320
,
10000000
01000000
00336336336336336336
00100000
00010000
00001000
00000100
00000010
,
20687000000
87131000000
005015515501550
0001820182182232
001550050155155
000501551550155
00105105287105287287
0018201821822320

G:=sub<GL(8,GF(337))| [13,13,0,0,0,0,0,0,324,13,0,0,0,0,0,0,0,0,17,0,303,34,303,0,0,0,34,17,303,0,0,303,0,0,34,34,320,0,303,0,0,0,0,34,0,17,303,303,0,0,34,0,0,34,320,303,0,0,0,34,303,34,0,320],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,336,1,0,0,0,0,0,0,336,0,1,0,0,0,0,0,336,0,0,1,0,0,0,0,336,0,0,0,1,0,0,0,336,0,0,0,0,1,0,0,336,0,0,0,0,0],[206,87,0,0,0,0,0,0,87,131,0,0,0,0,0,0,0,0,50,0,155,0,105,182,0,0,155,182,0,50,105,0,0,0,155,0,0,155,287,182,0,0,0,182,50,155,105,182,0,0,155,182,155,0,287,232,0,0,0,232,155,155,287,0] >;

C8.F7 in GAP, Magma, Sage, TeX

C_8.F_7
% in TeX

G:=Group("C8.F7");
// GroupNames label

G:=SmallGroup(336,11);
// by ID

G=gap.SmallGroup(336,11);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-7,144,169,223,867,69,10373,1745]);
// Polycyclic

G:=Group<a,b,c|a^8=b^7=1,c^6=a^4,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^5>;
// generators/relations

Export

Subgroup lattice of C8.F7 in TeX
Character table of C8.F7 in TeX

׿
×
𝔽