Copied to
clipboard

G = D170order 340 = 22·5·17

Dihedral group

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D170, C2×D85, C34⋊D5, C10⋊D17, C52D34, C172D10, C1701C2, C852C22, sometimes denoted D340 or Dih170 or Dih340, SmallGroup(340,14)

Series: Derived Chief Lower central Upper central

C1C85 — D170
C1C17C85D85 — D170
C85 — D170
C1C2

Generators and relations for D170
 G = < a,b | a170=b2=1, bab=a-1 >

85C2
85C2
85C22
17D5
17D5
5D17
5D17
17D10
5D34

Smallest permutation representation of D170
On 170 points
Generators in S170
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170)
(1 170)(2 169)(3 168)(4 167)(5 166)(6 165)(7 164)(8 163)(9 162)(10 161)(11 160)(12 159)(13 158)(14 157)(15 156)(16 155)(17 154)(18 153)(19 152)(20 151)(21 150)(22 149)(23 148)(24 147)(25 146)(26 145)(27 144)(28 143)(29 142)(30 141)(31 140)(32 139)(33 138)(34 137)(35 136)(36 135)(37 134)(38 133)(39 132)(40 131)(41 130)(42 129)(43 128)(44 127)(45 126)(46 125)(47 124)(48 123)(49 122)(50 121)(51 120)(52 119)(53 118)(54 117)(55 116)(56 115)(57 114)(58 113)(59 112)(60 111)(61 110)(62 109)(63 108)(64 107)(65 106)(66 105)(67 104)(68 103)(69 102)(70 101)(71 100)(72 99)(73 98)(74 97)(75 96)(76 95)(77 94)(78 93)(79 92)(80 91)(81 90)(82 89)(83 88)(84 87)(85 86)

G:=sub<Sym(170)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170), (1,170)(2,169)(3,168)(4,167)(5,166)(6,165)(7,164)(8,163)(9,162)(10,161)(11,160)(12,159)(13,158)(14,157)(15,156)(16,155)(17,154)(18,153)(19,152)(20,151)(21,150)(22,149)(23,148)(24,147)(25,146)(26,145)(27,144)(28,143)(29,142)(30,141)(31,140)(32,139)(33,138)(34,137)(35,136)(36,135)(37,134)(38,133)(39,132)(40,131)(41,130)(42,129)(43,128)(44,127)(45,126)(46,125)(47,124)(48,123)(49,122)(50,121)(51,120)(52,119)(53,118)(54,117)(55,116)(56,115)(57,114)(58,113)(59,112)(60,111)(61,110)(62,109)(63,108)(64,107)(65,106)(66,105)(67,104)(68,103)(69,102)(70,101)(71,100)(72,99)(73,98)(74,97)(75,96)(76,95)(77,94)(78,93)(79,92)(80,91)(81,90)(82,89)(83,88)(84,87)(85,86)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170), (1,170)(2,169)(3,168)(4,167)(5,166)(6,165)(7,164)(8,163)(9,162)(10,161)(11,160)(12,159)(13,158)(14,157)(15,156)(16,155)(17,154)(18,153)(19,152)(20,151)(21,150)(22,149)(23,148)(24,147)(25,146)(26,145)(27,144)(28,143)(29,142)(30,141)(31,140)(32,139)(33,138)(34,137)(35,136)(36,135)(37,134)(38,133)(39,132)(40,131)(41,130)(42,129)(43,128)(44,127)(45,126)(46,125)(47,124)(48,123)(49,122)(50,121)(51,120)(52,119)(53,118)(54,117)(55,116)(56,115)(57,114)(58,113)(59,112)(60,111)(61,110)(62,109)(63,108)(64,107)(65,106)(66,105)(67,104)(68,103)(69,102)(70,101)(71,100)(72,99)(73,98)(74,97)(75,96)(76,95)(77,94)(78,93)(79,92)(80,91)(81,90)(82,89)(83,88)(84,87)(85,86) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170)], [(1,170),(2,169),(3,168),(4,167),(5,166),(6,165),(7,164),(8,163),(9,162),(10,161),(11,160),(12,159),(13,158),(14,157),(15,156),(16,155),(17,154),(18,153),(19,152),(20,151),(21,150),(22,149),(23,148),(24,147),(25,146),(26,145),(27,144),(28,143),(29,142),(30,141),(31,140),(32,139),(33,138),(34,137),(35,136),(36,135),(37,134),(38,133),(39,132),(40,131),(41,130),(42,129),(43,128),(44,127),(45,126),(46,125),(47,124),(48,123),(49,122),(50,121),(51,120),(52,119),(53,118),(54,117),(55,116),(56,115),(57,114),(58,113),(59,112),(60,111),(61,110),(62,109),(63,108),(64,107),(65,106),(66,105),(67,104),(68,103),(69,102),(70,101),(71,100),(72,99),(73,98),(74,97),(75,96),(76,95),(77,94),(78,93),(79,92),(80,91),(81,90),(82,89),(83,88),(84,87),(85,86)]])

88 conjugacy classes

class 1 2A2B2C5A5B10A10B17A···17H34A···34H85A···85AF170A···170AF
order122255101017···1734···3485···85170···170
size11858522222···22···22···22···2

88 irreducible representations

dim111222222
type+++++++++
imageC1C2C2D5D10D17D34D85D170
kernelD170D85C170C34C17C10C5C2C1
# reps12122883232

Matrix representation of D170 in GL3(𝔽1021) generated by

102000
0813595
042692
,
100
0813595
0799208
G:=sub<GL(3,GF(1021))| [1020,0,0,0,813,426,0,595,92],[1,0,0,0,813,799,0,595,208] >;

D170 in GAP, Magma, Sage, TeX

D_{170}
% in TeX

G:=Group("D170");
// GroupNames label

G:=SmallGroup(340,14);
// by ID

G=gap.SmallGroup(340,14);
# by ID

G:=PCGroup([4,-2,-2,-5,-17,194,5123]);
// Polycyclic

G:=Group<a,b|a^170=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D170 in TeX

׿
×
𝔽