metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: D173, C173⋊C2, sometimes denoted D346 or Dih173 or Dih346, SmallGroup(346,1)
Series: Derived ►Chief ►Lower central ►Upper central
C173 — D173 |
Generators and relations for D173
G = < a,b | a173=b2=1, bab=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173)
(1 173)(2 172)(3 171)(4 170)(5 169)(6 168)(7 167)(8 166)(9 165)(10 164)(11 163)(12 162)(13 161)(14 160)(15 159)(16 158)(17 157)(18 156)(19 155)(20 154)(21 153)(22 152)(23 151)(24 150)(25 149)(26 148)(27 147)(28 146)(29 145)(30 144)(31 143)(32 142)(33 141)(34 140)(35 139)(36 138)(37 137)(38 136)(39 135)(40 134)(41 133)(42 132)(43 131)(44 130)(45 129)(46 128)(47 127)(48 126)(49 125)(50 124)(51 123)(52 122)(53 121)(54 120)(55 119)(56 118)(57 117)(58 116)(59 115)(60 114)(61 113)(62 112)(63 111)(64 110)(65 109)(66 108)(67 107)(68 106)(69 105)(70 104)(71 103)(72 102)(73 101)(74 100)(75 99)(76 98)(77 97)(78 96)(79 95)(80 94)(81 93)(82 92)(83 91)(84 90)(85 89)(86 88)
G:=sub<Sym(173)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173), (1,173)(2,172)(3,171)(4,170)(5,169)(6,168)(7,167)(8,166)(9,165)(10,164)(11,163)(12,162)(13,161)(14,160)(15,159)(16,158)(17,157)(18,156)(19,155)(20,154)(21,153)(22,152)(23,151)(24,150)(25,149)(26,148)(27,147)(28,146)(29,145)(30,144)(31,143)(32,142)(33,141)(34,140)(35,139)(36,138)(37,137)(38,136)(39,135)(40,134)(41,133)(42,132)(43,131)(44,130)(45,129)(46,128)(47,127)(48,126)(49,125)(50,124)(51,123)(52,122)(53,121)(54,120)(55,119)(56,118)(57,117)(58,116)(59,115)(60,114)(61,113)(62,112)(63,111)(64,110)(65,109)(66,108)(67,107)(68,106)(69,105)(70,104)(71,103)(72,102)(73,101)(74,100)(75,99)(76,98)(77,97)(78,96)(79,95)(80,94)(81,93)(82,92)(83,91)(84,90)(85,89)(86,88)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173), (1,173)(2,172)(3,171)(4,170)(5,169)(6,168)(7,167)(8,166)(9,165)(10,164)(11,163)(12,162)(13,161)(14,160)(15,159)(16,158)(17,157)(18,156)(19,155)(20,154)(21,153)(22,152)(23,151)(24,150)(25,149)(26,148)(27,147)(28,146)(29,145)(30,144)(31,143)(32,142)(33,141)(34,140)(35,139)(36,138)(37,137)(38,136)(39,135)(40,134)(41,133)(42,132)(43,131)(44,130)(45,129)(46,128)(47,127)(48,126)(49,125)(50,124)(51,123)(52,122)(53,121)(54,120)(55,119)(56,118)(57,117)(58,116)(59,115)(60,114)(61,113)(62,112)(63,111)(64,110)(65,109)(66,108)(67,107)(68,106)(69,105)(70,104)(71,103)(72,102)(73,101)(74,100)(75,99)(76,98)(77,97)(78,96)(79,95)(80,94)(81,93)(82,92)(83,91)(84,90)(85,89)(86,88) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173)], [(1,173),(2,172),(3,171),(4,170),(5,169),(6,168),(7,167),(8,166),(9,165),(10,164),(11,163),(12,162),(13,161),(14,160),(15,159),(16,158),(17,157),(18,156),(19,155),(20,154),(21,153),(22,152),(23,151),(24,150),(25,149),(26,148),(27,147),(28,146),(29,145),(30,144),(31,143),(32,142),(33,141),(34,140),(35,139),(36,138),(37,137),(38,136),(39,135),(40,134),(41,133),(42,132),(43,131),(44,130),(45,129),(46,128),(47,127),(48,126),(49,125),(50,124),(51,123),(52,122),(53,121),(54,120),(55,119),(56,118),(57,117),(58,116),(59,115),(60,114),(61,113),(62,112),(63,111),(64,110),(65,109),(66,108),(67,107),(68,106),(69,105),(70,104),(71,103),(72,102),(73,101),(74,100),(75,99),(76,98),(77,97),(78,96),(79,95),(80,94),(81,93),(82,92),(83,91),(84,90),(85,89),(86,88)]])
88 conjugacy classes
class | 1 | 2 | 173A | ··· | 173CH |
order | 1 | 2 | 173 | ··· | 173 |
size | 1 | 173 | 2 | ··· | 2 |
88 irreducible representations
dim | 1 | 1 | 2 |
type | + | + | + |
image | C1 | C2 | D173 |
kernel | D173 | C173 | C1 |
# reps | 1 | 1 | 86 |
Matrix representation of D173 ►in GL2(𝔽347) generated by
31 | 346 |
223 | 60 |
156 | 48 |
281 | 191 |
G:=sub<GL(2,GF(347))| [31,223,346,60],[156,281,48,191] >;
D173 in GAP, Magma, Sage, TeX
D_{173}
% in TeX
G:=Group("D173");
// GroupNames label
G:=SmallGroup(346,1);
// by ID
G=gap.SmallGroup(346,1);
# by ID
G:=PCGroup([2,-2,-173,1377]);
// Polycyclic
G:=Group<a,b|a^173=b^2=1,b*a*b=a^-1>;
// generators/relations
Export