Extensions 1→N→G→Q→1 with N=C57 and Q=C6

Direct product G=N×Q with N=C57 and Q=C6
dρLabelID
C3×C114342C3xC114342,18

Semidirect products G=N:Q with N=C57 and Q=C6
extensionφ:Q→Aut NdρLabelID
C571C6 = D57⋊C3φ: C6/C1C6 ⊆ Aut C57576+C57:1C6342,11
C572C6 = C3×C19⋊C6φ: C6/C1C6 ⊆ Aut C57576C57:2C6342,9
C573C6 = S3×C19⋊C3φ: C6/C1C6 ⊆ Aut C57576C57:3C6342,10
C574C6 = C6×C19⋊C3φ: C6/C2C3 ⊆ Aut C571143C57:4C6342,12
C575C6 = C3×D57φ: C6/C3C2 ⊆ Aut C571142C57:5C6342,15
C576C6 = C32×D19φ: C6/C3C2 ⊆ Aut C57171C57:6C6342,13
C577C6 = S3×C57φ: C6/C3C2 ⊆ Aut C571142C57:7C6342,14

Non-split extensions G=N.Q with N=C57 and Q=C6
extensionφ:Q→Aut NdρLabelID
C57.C6 = C57.C6φ: C6/C1C6 ⊆ Aut C571716C57.C6342,1
C57.2C6 = C2×C192C9φ: C6/C2C3 ⊆ Aut C573423C57.2C6342,2
C57.3C6 = C9×D19φ: C6/C3C2 ⊆ Aut C571712C57.3C6342,4

׿
×
𝔽