Copied to
clipboard

G = D57⋊C3order 342 = 2·32·19

The semidirect product of D57 and C3 acting faithfully

metacyclic, supersoluble, monomial, A-group

Aliases: D57⋊C3, C571C6, C19⋊C3⋊S3, C19⋊(C3×S3), C3⋊(C19⋊C6), (C3×C19⋊C3)⋊1C2, SmallGroup(342,11)

Series: Derived Chief Lower central Upper central

C1C57 — D57⋊C3
C1C19C57C3×C19⋊C3 — D57⋊C3
C57 — D57⋊C3
C1

Generators and relations for D57⋊C3
 G = < a,b,c | a57=b2=c3=1, bab=a-1, cac-1=a49, cbc-1=a48b >

57C2
19C3
38C3
19S3
57C6
19C32
3D19
2C19⋊C3
19C3×S3
3C19⋊C6

Character table of D57⋊C3

 class 123A3B3C3D3E6A6B19A19B19C57A57B57C57D57E57F
 size 1572191938385757666666666
ρ1111111111111111111    trivial
ρ21-111111-1-1111111111    linear of order 2
ρ31-11ζ3ζ32ζ3ζ32ζ65ζ6111111111    linear of order 6
ρ4111ζ3ζ32ζ3ζ32ζ3ζ32111111111    linear of order 3
ρ51-11ζ32ζ3ζ32ζ3ζ6ζ65111111111    linear of order 6
ρ6111ζ32ζ3ζ32ζ3ζ32ζ3111111111    linear of order 3
ρ720-122-1-100222-1-1-1-1-1-1    orthogonal lifted from S3
ρ820-1-1--3-1+-3ζ6ζ6500222-1-1-1-1-1-1    complex lifted from C3×S3
ρ920-1-1+-3-1--3ζ65ζ600222-1-1-1-1-1-1    complex lifted from C3×S3
ρ10606000000ζ191519131910199196194ζ19181912191119819719ζ191719161914195193192ζ191519131910199196194ζ191719161914195193192ζ191519131910199196194ζ19181912191119819719ζ191719161914195193192ζ19181912191119819719    orthogonal lifted from C19⋊C6
ρ11606000000ζ191719161914195193192ζ191519131910199196194ζ19181912191119819719ζ191719161914195193192ζ19181912191119819719ζ191719161914195193192ζ191519131910199196194ζ19181912191119819719ζ191519131910199196194    orthogonal lifted from C19⋊C6
ρ12606000000ζ19181912191119819719ζ191719161914195193192ζ191519131910199196194ζ19181912191119819719ζ191519131910199196194ζ19181912191119819719ζ191719161914195193192ζ191519131910199196194ζ191719161914195193192    orthogonal lifted from C19⋊C6
ρ1360-3000000ζ191719161914195193192ζ191519131910199196194ζ191819121911198197193ζ19173ζ19163ζ19143ζ1953ζ1933ζ19219171916195ζ3ζ19183ζ19123ζ19113ζ1983ζ1973ζ1919111971932ζ191732ζ191632ζ191432ζ19532ζ19332ζ1921917191619532ζ191532ζ191332ζ191032ζ19932ζ19632ζ1941915191319103ζ19183ζ19123ζ19113ζ1983ζ1973ζ1919181912198ζ32ζ191532ζ191332ζ191032ζ19932ζ19632ζ194199196194    orthogonal faithful
ρ1460-3000000ζ19181912191119819719ζ191719161914195193192ζ191519131910199196194ζ3ζ19183ζ19123ζ19113ζ1983ζ1973ζ1919111971932ζ191532ζ191332ζ191032ζ19932ζ19632ζ1941915191319103ζ19183ζ19123ζ19113ζ1983ζ1973ζ19191819121983ζ19173ζ19163ζ19143ζ1953ζ1933ζ19219171916195ζ32ζ191532ζ191332ζ191032ζ19932ζ19632ζ19419919619432ζ191732ζ191632ζ191432ζ19532ζ19332ζ19219171916195    orthogonal faithful
ρ1560-3000000ζ191719161914195193192ζ191519131910199196194ζ1918191219111981971932ζ191732ζ191632ζ191432ζ19532ζ19332ζ192191719161953ζ19183ζ19123ζ19113ζ1983ζ1973ζ19191819121983ζ19173ζ19163ζ19143ζ1953ζ1933ζ19219171916195ζ32ζ191532ζ191332ζ191032ζ19932ζ19632ζ194199196194ζ3ζ19183ζ19123ζ19113ζ1983ζ1973ζ1919111971932ζ191532ζ191332ζ191032ζ19932ζ19632ζ194191519131910    orthogonal faithful
ρ1660-3000000ζ191519131910199196194ζ19181912191119819719ζ19171916191419519319232ζ191532ζ191332ζ191032ζ19932ζ19632ζ1941915191319103ζ19173ζ19163ζ19143ζ1953ζ1933ζ19219171916195ζ32ζ191532ζ191332ζ191032ζ19932ζ19632ζ194199196194ζ3ζ19183ζ19123ζ19113ζ1983ζ1973ζ1919111971932ζ191732ζ191632ζ191432ζ19532ζ19332ζ192191719161953ζ19183ζ19123ζ19113ζ1983ζ1973ζ1919181912198    orthogonal faithful
ρ1760-3000000ζ191519131910199196194ζ19181912191119819719ζ191719161914195193192ζ32ζ191532ζ191332ζ191032ζ19932ζ19632ζ19419919619432ζ191732ζ191632ζ191432ζ19532ζ19332ζ1921917191619532ζ191532ζ191332ζ191032ζ19932ζ19632ζ1941915191319103ζ19183ζ19123ζ19113ζ1983ζ1973ζ19191819121983ζ19173ζ19163ζ19143ζ1953ζ1933ζ19219171916195ζ3ζ19183ζ19123ζ19113ζ1983ζ1973ζ19191119719    orthogonal faithful
ρ1860-3000000ζ19181912191119819719ζ191719161914195193192ζ1915191319101991961943ζ19183ζ19123ζ19113ζ1983ζ1973ζ1919181912198ζ32ζ191532ζ191332ζ191032ζ19932ζ19632ζ194199196194ζ3ζ19183ζ19123ζ19113ζ1983ζ1973ζ1919111971932ζ191732ζ191632ζ191432ζ19532ζ19332ζ1921917191619532ζ191532ζ191332ζ191032ζ19932ζ19632ζ1941915191319103ζ19173ζ19163ζ19143ζ1953ζ1933ζ19219171916195    orthogonal faithful

Smallest permutation representation of D57⋊C3
On 57 points
Generators in S57
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)
(1 57)(2 56)(3 55)(4 54)(5 53)(6 52)(7 51)(8 50)(9 49)(10 48)(11 47)(12 46)(13 45)(14 44)(15 43)(16 42)(17 41)(18 40)(19 39)(20 38)(21 37)(22 36)(23 35)(24 34)(25 33)(26 32)(27 31)(28 30)
(2 8 50)(3 15 42)(4 22 34)(5 29 26)(6 36 18)(7 43 10)(9 57 51)(11 14 35)(12 21 27)(13 28 19)(16 49 52)(17 56 44)(23 41 53)(24 48 45)(25 55 37)(30 33 54)(31 40 46)(32 47 38)

G:=sub<Sym(57)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57), (1,57)(2,56)(3,55)(4,54)(5,53)(6,52)(7,51)(8,50)(9,49)(10,48)(11,47)(12,46)(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30), (2,8,50)(3,15,42)(4,22,34)(5,29,26)(6,36,18)(7,43,10)(9,57,51)(11,14,35)(12,21,27)(13,28,19)(16,49,52)(17,56,44)(23,41,53)(24,48,45)(25,55,37)(30,33,54)(31,40,46)(32,47,38)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57), (1,57)(2,56)(3,55)(4,54)(5,53)(6,52)(7,51)(8,50)(9,49)(10,48)(11,47)(12,46)(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30), (2,8,50)(3,15,42)(4,22,34)(5,29,26)(6,36,18)(7,43,10)(9,57,51)(11,14,35)(12,21,27)(13,28,19)(16,49,52)(17,56,44)(23,41,53)(24,48,45)(25,55,37)(30,33,54)(31,40,46)(32,47,38) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)], [(1,57),(2,56),(3,55),(4,54),(5,53),(6,52),(7,51),(8,50),(9,49),(10,48),(11,47),(12,46),(13,45),(14,44),(15,43),(16,42),(17,41),(18,40),(19,39),(20,38),(21,37),(22,36),(23,35),(24,34),(25,33),(26,32),(27,31),(28,30)], [(2,8,50),(3,15,42),(4,22,34),(5,29,26),(6,36,18),(7,43,10),(9,57,51),(11,14,35),(12,21,27),(13,28,19),(16,49,52),(17,56,44),(23,41,53),(24,48,45),(25,55,37),(30,33,54),(31,40,46),(32,47,38)]])

Matrix representation of D57⋊C3 in GL6(𝔽229)

1524618419866181
992094211224160
132321802246237
6222215121417124
225175521621322
182161178202192119
,
1963145150195140
10683188814770
179617610168225
83115919812144
251191642198237
621686227172181
,
1127223125103108
001000
10312522312711
000001
291965175131102
286917717829103

G:=sub<GL(6,GF(229))| [152,99,132,62,225,182,46,209,32,222,175,161,184,42,180,151,52,178,198,112,224,214,16,202,66,24,62,17,213,192,181,160,37,124,22,119],[196,106,17,83,25,62,31,83,96,115,119,168,45,188,176,9,164,62,150,8,101,198,219,27,195,147,68,12,82,172,140,70,225,144,37,181],[1,0,103,0,29,28,127,0,125,0,196,69,223,1,223,0,51,177,125,0,127,0,75,178,103,0,1,0,131,29,108,0,1,1,102,103] >;

D57⋊C3 in GAP, Magma, Sage, TeX

D_{57}\rtimes C_3
% in TeX

G:=Group("D57:C3");
// GroupNames label

G:=SmallGroup(342,11);
// by ID

G=gap.SmallGroup(342,11);
# by ID

G:=PCGroup([4,-2,-3,-3,-19,146,5187,1015]);
// Polycyclic

G:=Group<a,b,c|a^57=b^2=c^3=1,b*a*b=a^-1,c*a*c^-1=a^49,c*b*c^-1=a^48*b>;
// generators/relations

Export

Subgroup lattice of D57⋊C3 in TeX
Character table of D57⋊C3 in TeX

׿
×
𝔽