metacyclic, supersoluble, monomial, A-group
Aliases: D57⋊C3, C57⋊1C6, C19⋊C3⋊S3, C19⋊(C3×S3), C3⋊(C19⋊C6), (C3×C19⋊C3)⋊1C2, SmallGroup(342,11)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C19 — C57 — C3×C19⋊C3 — D57⋊C3 |
C57 — D57⋊C3 |
Generators and relations for D57⋊C3
G = < a,b,c | a57=b2=c3=1, bab=a-1, cac-1=a49, cbc-1=a48b >
Character table of D57⋊C3
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 6A | 6B | 19A | 19B | 19C | 57A | 57B | 57C | 57D | 57E | 57F | |
size | 1 | 57 | 2 | 19 | 19 | 38 | 38 | 57 | 57 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ4 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ5 | 1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ6 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ7 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ9 | 2 | 0 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 0 | 0 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ10 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | orthogonal lifted from C19⋊C6 |
ρ11 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | orthogonal lifted from C19⋊C6 |
ρ12 | 6 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | orthogonal lifted from C19⋊C6 |
ρ13 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | -ζ3ζ1917-ζ3ζ1916+ζ3ζ1914-ζ3ζ195+ζ3ζ193+ζ3ζ192-ζ1917-ζ1916-ζ195 | ζ3ζ1918+ζ3ζ1912-ζ3ζ1911+ζ3ζ198-ζ3ζ197-ζ3ζ19-ζ1911-ζ197-ζ19 | -ζ32ζ1917-ζ32ζ1916+ζ32ζ1914-ζ32ζ195+ζ32ζ193+ζ32ζ192-ζ1917-ζ1916-ζ195 | -ζ32ζ1915-ζ32ζ1913-ζ32ζ1910+ζ32ζ199+ζ32ζ196+ζ32ζ194-ζ1915-ζ1913-ζ1910 | -ζ3ζ1918-ζ3ζ1912+ζ3ζ1911-ζ3ζ198+ζ3ζ197+ζ3ζ19-ζ1918-ζ1912-ζ198 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910-ζ32ζ199-ζ32ζ196-ζ32ζ194-ζ199-ζ196-ζ194 | orthogonal faithful |
ρ14 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ3ζ1918+ζ3ζ1912-ζ3ζ1911+ζ3ζ198-ζ3ζ197-ζ3ζ19-ζ1911-ζ197-ζ19 | -ζ32ζ1915-ζ32ζ1913-ζ32ζ1910+ζ32ζ199+ζ32ζ196+ζ32ζ194-ζ1915-ζ1913-ζ1910 | -ζ3ζ1918-ζ3ζ1912+ζ3ζ1911-ζ3ζ198+ζ3ζ197+ζ3ζ19-ζ1918-ζ1912-ζ198 | -ζ3ζ1917-ζ3ζ1916+ζ3ζ1914-ζ3ζ195+ζ3ζ193+ζ3ζ192-ζ1917-ζ1916-ζ195 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910-ζ32ζ199-ζ32ζ196-ζ32ζ194-ζ199-ζ196-ζ194 | -ζ32ζ1917-ζ32ζ1916+ζ32ζ1914-ζ32ζ195+ζ32ζ193+ζ32ζ192-ζ1917-ζ1916-ζ195 | orthogonal faithful |
ρ15 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | -ζ32ζ1917-ζ32ζ1916+ζ32ζ1914-ζ32ζ195+ζ32ζ193+ζ32ζ192-ζ1917-ζ1916-ζ195 | -ζ3ζ1918-ζ3ζ1912+ζ3ζ1911-ζ3ζ198+ζ3ζ197+ζ3ζ19-ζ1918-ζ1912-ζ198 | -ζ3ζ1917-ζ3ζ1916+ζ3ζ1914-ζ3ζ195+ζ3ζ193+ζ3ζ192-ζ1917-ζ1916-ζ195 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910-ζ32ζ199-ζ32ζ196-ζ32ζ194-ζ199-ζ196-ζ194 | ζ3ζ1918+ζ3ζ1912-ζ3ζ1911+ζ3ζ198-ζ3ζ197-ζ3ζ19-ζ1911-ζ197-ζ19 | -ζ32ζ1915-ζ32ζ1913-ζ32ζ1910+ζ32ζ199+ζ32ζ196+ζ32ζ194-ζ1915-ζ1913-ζ1910 | orthogonal faithful |
ρ16 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | -ζ32ζ1915-ζ32ζ1913-ζ32ζ1910+ζ32ζ199+ζ32ζ196+ζ32ζ194-ζ1915-ζ1913-ζ1910 | -ζ3ζ1917-ζ3ζ1916+ζ3ζ1914-ζ3ζ195+ζ3ζ193+ζ3ζ192-ζ1917-ζ1916-ζ195 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910-ζ32ζ199-ζ32ζ196-ζ32ζ194-ζ199-ζ196-ζ194 | ζ3ζ1918+ζ3ζ1912-ζ3ζ1911+ζ3ζ198-ζ3ζ197-ζ3ζ19-ζ1911-ζ197-ζ19 | -ζ32ζ1917-ζ32ζ1916+ζ32ζ1914-ζ32ζ195+ζ32ζ193+ζ32ζ192-ζ1917-ζ1916-ζ195 | -ζ3ζ1918-ζ3ζ1912+ζ3ζ1911-ζ3ζ198+ζ3ζ197+ζ3ζ19-ζ1918-ζ1912-ζ198 | orthogonal faithful |
ρ17 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910-ζ32ζ199-ζ32ζ196-ζ32ζ194-ζ199-ζ196-ζ194 | -ζ32ζ1917-ζ32ζ1916+ζ32ζ1914-ζ32ζ195+ζ32ζ193+ζ32ζ192-ζ1917-ζ1916-ζ195 | -ζ32ζ1915-ζ32ζ1913-ζ32ζ1910+ζ32ζ199+ζ32ζ196+ζ32ζ194-ζ1915-ζ1913-ζ1910 | -ζ3ζ1918-ζ3ζ1912+ζ3ζ1911-ζ3ζ198+ζ3ζ197+ζ3ζ19-ζ1918-ζ1912-ζ198 | -ζ3ζ1917-ζ3ζ1916+ζ3ζ1914-ζ3ζ195+ζ3ζ193+ζ3ζ192-ζ1917-ζ1916-ζ195 | ζ3ζ1918+ζ3ζ1912-ζ3ζ1911+ζ3ζ198-ζ3ζ197-ζ3ζ19-ζ1911-ζ197-ζ19 | orthogonal faithful |
ρ18 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | -ζ3ζ1918-ζ3ζ1912+ζ3ζ1911-ζ3ζ198+ζ3ζ197+ζ3ζ19-ζ1918-ζ1912-ζ198 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910-ζ32ζ199-ζ32ζ196-ζ32ζ194-ζ199-ζ196-ζ194 | ζ3ζ1918+ζ3ζ1912-ζ3ζ1911+ζ3ζ198-ζ3ζ197-ζ3ζ19-ζ1911-ζ197-ζ19 | -ζ32ζ1917-ζ32ζ1916+ζ32ζ1914-ζ32ζ195+ζ32ζ193+ζ32ζ192-ζ1917-ζ1916-ζ195 | -ζ32ζ1915-ζ32ζ1913-ζ32ζ1910+ζ32ζ199+ζ32ζ196+ζ32ζ194-ζ1915-ζ1913-ζ1910 | -ζ3ζ1917-ζ3ζ1916+ζ3ζ1914-ζ3ζ195+ζ3ζ193+ζ3ζ192-ζ1917-ζ1916-ζ195 | orthogonal faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)
(1 57)(2 56)(3 55)(4 54)(5 53)(6 52)(7 51)(8 50)(9 49)(10 48)(11 47)(12 46)(13 45)(14 44)(15 43)(16 42)(17 41)(18 40)(19 39)(20 38)(21 37)(22 36)(23 35)(24 34)(25 33)(26 32)(27 31)(28 30)
(2 8 50)(3 15 42)(4 22 34)(5 29 26)(6 36 18)(7 43 10)(9 57 51)(11 14 35)(12 21 27)(13 28 19)(16 49 52)(17 56 44)(23 41 53)(24 48 45)(25 55 37)(30 33 54)(31 40 46)(32 47 38)
G:=sub<Sym(57)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57), (1,57)(2,56)(3,55)(4,54)(5,53)(6,52)(7,51)(8,50)(9,49)(10,48)(11,47)(12,46)(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30), (2,8,50)(3,15,42)(4,22,34)(5,29,26)(6,36,18)(7,43,10)(9,57,51)(11,14,35)(12,21,27)(13,28,19)(16,49,52)(17,56,44)(23,41,53)(24,48,45)(25,55,37)(30,33,54)(31,40,46)(32,47,38)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57), (1,57)(2,56)(3,55)(4,54)(5,53)(6,52)(7,51)(8,50)(9,49)(10,48)(11,47)(12,46)(13,45)(14,44)(15,43)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30), (2,8,50)(3,15,42)(4,22,34)(5,29,26)(6,36,18)(7,43,10)(9,57,51)(11,14,35)(12,21,27)(13,28,19)(16,49,52)(17,56,44)(23,41,53)(24,48,45)(25,55,37)(30,33,54)(31,40,46)(32,47,38) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)], [(1,57),(2,56),(3,55),(4,54),(5,53),(6,52),(7,51),(8,50),(9,49),(10,48),(11,47),(12,46),(13,45),(14,44),(15,43),(16,42),(17,41),(18,40),(19,39),(20,38),(21,37),(22,36),(23,35),(24,34),(25,33),(26,32),(27,31),(28,30)], [(2,8,50),(3,15,42),(4,22,34),(5,29,26),(6,36,18),(7,43,10),(9,57,51),(11,14,35),(12,21,27),(13,28,19),(16,49,52),(17,56,44),(23,41,53),(24,48,45),(25,55,37),(30,33,54),(31,40,46),(32,47,38)]])
Matrix representation of D57⋊C3 ►in GL6(𝔽229)
152 | 46 | 184 | 198 | 66 | 181 |
99 | 209 | 42 | 112 | 24 | 160 |
132 | 32 | 180 | 224 | 62 | 37 |
62 | 222 | 151 | 214 | 17 | 124 |
225 | 175 | 52 | 16 | 213 | 22 |
182 | 161 | 178 | 202 | 192 | 119 |
196 | 31 | 45 | 150 | 195 | 140 |
106 | 83 | 188 | 8 | 147 | 70 |
17 | 96 | 176 | 101 | 68 | 225 |
83 | 115 | 9 | 198 | 12 | 144 |
25 | 119 | 164 | 219 | 82 | 37 |
62 | 168 | 62 | 27 | 172 | 181 |
1 | 127 | 223 | 125 | 103 | 108 |
0 | 0 | 1 | 0 | 0 | 0 |
103 | 125 | 223 | 127 | 1 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
29 | 196 | 51 | 75 | 131 | 102 |
28 | 69 | 177 | 178 | 29 | 103 |
G:=sub<GL(6,GF(229))| [152,99,132,62,225,182,46,209,32,222,175,161,184,42,180,151,52,178,198,112,224,214,16,202,66,24,62,17,213,192,181,160,37,124,22,119],[196,106,17,83,25,62,31,83,96,115,119,168,45,188,176,9,164,62,150,8,101,198,219,27,195,147,68,12,82,172,140,70,225,144,37,181],[1,0,103,0,29,28,127,0,125,0,196,69,223,1,223,0,51,177,125,0,127,0,75,178,103,0,1,0,131,29,108,0,1,1,102,103] >;
D57⋊C3 in GAP, Magma, Sage, TeX
D_{57}\rtimes C_3
% in TeX
G:=Group("D57:C3");
// GroupNames label
G:=SmallGroup(342,11);
// by ID
G=gap.SmallGroup(342,11);
# by ID
G:=PCGroup([4,-2,-3,-3,-19,146,5187,1015]);
// Polycyclic
G:=Group<a,b,c|a^57=b^2=c^3=1,b*a*b=a^-1,c*a*c^-1=a^49,c*b*c^-1=a^48*b>;
// generators/relations
Export
Subgroup lattice of D57⋊C3 in TeX
Character table of D57⋊C3 in TeX