direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C3×C19⋊C6, C57⋊2C6, D19⋊C32, C19⋊C3⋊C6, C19⋊(C3×C6), (C3×D19)⋊C3, (C3×C19⋊C3)⋊2C2, SmallGroup(342,9)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C19 — C57 — C3×C19⋊C3 — C3×C19⋊C6 |
C19 — C3×C19⋊C6 |
Generators and relations for C3×C19⋊C6
G = < a,b,c | a3=b19=c6=1, ab=ba, ac=ca, cbc-1=b12 >
Character table of C3×C19⋊C6
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 19A | 19B | 19C | 57A | 57B | 57C | 57D | 57E | 57F | |
size | 1 | 19 | 1 | 1 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ6 | ζ65 | ζ6 | -1 | ζ65 | ζ6 | -1 | ζ65 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 6 |
ρ4 | 1 | -1 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | ζ3 | ζ65 | ζ65 | ζ6 | ζ65 | ζ6 | -1 | ζ6 | -1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 6 |
ρ5 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ7 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ32 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ8 | 1 | -1 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | ζ32 | ζ6 | ζ6 | ζ65 | ζ6 | ζ65 | -1 | ζ65 | -1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 6 |
ρ9 | 1 | 1 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | ζ32 | 1 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ10 | 1 | -1 | ζ3 | ζ32 | 1 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | -1 | ζ6 | ζ65 | ζ65 | -1 | ζ6 | ζ6 | ζ65 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 6 |
ρ11 | 1 | 1 | ζ32 | ζ3 | 1 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | 1 | ζ3 | ζ32 | ζ32 | 1 | ζ3 | ζ3 | ζ32 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ12 | 1 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | ζ3 | ζ3 | 1 | ζ32 | ζ32 | ζ3 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ13 | 1 | -1 | 1 | 1 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ6 | -1 | -1 | ζ65 | ζ65 | ζ65 | ζ6 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ14 | 1 | -1 | ζ32 | ζ3 | 1 | ζ3 | ζ3 | ζ32 | 1 | ζ32 | -1 | ζ65 | ζ6 | ζ6 | -1 | ζ65 | ζ65 | ζ6 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 6 |
ρ15 | 1 | -1 | 1 | 1 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ65 | -1 | -1 | ζ6 | ζ6 | ζ6 | ζ65 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ16 | 1 | 1 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | ζ3 | 1 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 3 |
ρ17 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ32 | ζ3 | ζ32 | 1 | ζ3 | ζ32 | 1 | ζ3 | 1 | 1 | 1 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | linear of order 3 |
ρ18 | 1 | -1 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | ζ32 | ζ3 | 1 | ζ65 | ζ6 | ζ65 | -1 | ζ6 | ζ65 | -1 | ζ6 | 1 | 1 | 1 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | linear of order 6 |
ρ19 | 6 | 0 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | orthogonal lifted from C19⋊C6 |
ρ20 | 6 | 0 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | orthogonal lifted from C19⋊C6 |
ρ21 | 6 | 0 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | orthogonal lifted from C19⋊C6 |
ρ22 | 6 | 0 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910+ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ32ζ1917+ζ32ζ1916+ζ32ζ1914+ζ32ζ195+ζ32ζ193+ζ32ζ192 | ζ32ζ1918+ζ32ζ1912+ζ32ζ1911+ζ32ζ198+ζ32ζ197+ζ32ζ19 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910+ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ3ζ1918+ζ3ζ1912+ζ3ζ1911+ζ3ζ198+ζ3ζ197+ζ3ζ19 | ζ3ζ1917+ζ3ζ1916+ζ3ζ1914+ζ3ζ195+ζ3ζ193+ζ3ζ192 | complex faithful |
ρ23 | 6 | 0 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ3ζ1918+ζ3ζ1912+ζ3ζ1911+ζ3ζ198+ζ3ζ197+ζ3ζ19 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910+ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ3ζ1917+ζ3ζ1916+ζ3ζ1914+ζ3ζ195+ζ3ζ193+ζ3ζ192 | ζ32ζ1918+ζ32ζ1912+ζ32ζ1911+ζ32ζ198+ζ32ζ197+ζ32ζ19 | ζ32ζ1917+ζ32ζ1916+ζ32ζ1914+ζ32ζ195+ζ32ζ193+ζ32ζ192 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910+ζ32ζ199+ζ32ζ196+ζ32ζ194 | complex faithful |
ρ24 | 6 | 0 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ32ζ1917+ζ32ζ1916+ζ32ζ1914+ζ32ζ195+ζ32ζ193+ζ32ζ192 | ζ32ζ1918+ζ32ζ1912+ζ32ζ1911+ζ32ζ198+ζ32ζ197+ζ32ζ19 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910+ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ3ζ1917+ζ3ζ1916+ζ3ζ1914+ζ3ζ195+ζ3ζ193+ζ3ζ192 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910+ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ3ζ1918+ζ3ζ1912+ζ3ζ1911+ζ3ζ198+ζ3ζ197+ζ3ζ19 | complex faithful |
ρ25 | 6 | 0 | -3-3√-3 | -3+3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ32ζ1918+ζ32ζ1912+ζ32ζ1911+ζ32ζ198+ζ32ζ197+ζ32ζ19 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910+ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ32ζ1917+ζ32ζ1916+ζ32ζ1914+ζ32ζ195+ζ32ζ193+ζ32ζ192 | ζ3ζ1918+ζ3ζ1912+ζ3ζ1911+ζ3ζ198+ζ3ζ197+ζ3ζ19 | ζ3ζ1917+ζ3ζ1916+ζ3ζ1914+ζ3ζ195+ζ3ζ193+ζ3ζ192 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910+ζ3ζ199+ζ3ζ196+ζ3ζ194 | complex faithful |
ρ26 | 6 | 0 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ3ζ1917+ζ3ζ1916+ζ3ζ1914+ζ3ζ195+ζ3ζ193+ζ3ζ192 | ζ3ζ1918+ζ3ζ1912+ζ3ζ1911+ζ3ζ198+ζ3ζ197+ζ3ζ19 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910+ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ32ζ1917+ζ32ζ1916+ζ32ζ1914+ζ32ζ195+ζ32ζ193+ζ32ζ192 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910+ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ32ζ1918+ζ32ζ1912+ζ32ζ1911+ζ32ζ198+ζ32ζ197+ζ32ζ19 | complex faithful |
ρ27 | 6 | 0 | -3+3√-3 | -3-3√-3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1915+ζ1913+ζ1910+ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ1911+ζ198+ζ197+ζ19 | ζ1917+ζ1916+ζ1914+ζ195+ζ193+ζ192 | ζ3ζ1915+ζ3ζ1913+ζ3ζ1910+ζ3ζ199+ζ3ζ196+ζ3ζ194 | ζ3ζ1917+ζ3ζ1916+ζ3ζ1914+ζ3ζ195+ζ3ζ193+ζ3ζ192 | ζ3ζ1918+ζ3ζ1912+ζ3ζ1911+ζ3ζ198+ζ3ζ197+ζ3ζ19 | ζ32ζ1915+ζ32ζ1913+ζ32ζ1910+ζ32ζ199+ζ32ζ196+ζ32ζ194 | ζ32ζ1918+ζ32ζ1912+ζ32ζ1911+ζ32ζ198+ζ32ζ197+ζ32ζ19 | ζ32ζ1917+ζ32ζ1916+ζ32ζ1914+ζ32ζ195+ζ32ζ193+ζ32ζ192 | complex faithful |
(1 39 20)(2 40 21)(3 41 22)(4 42 23)(5 43 24)(6 44 25)(7 45 26)(8 46 27)(9 47 28)(10 48 29)(11 49 30)(12 50 31)(13 51 32)(14 52 33)(15 53 34)(16 54 35)(17 55 36)(18 56 37)(19 57 38)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)
(1 39 20)(2 47 27 19 50 32)(3 55 34 18 42 25)(4 44 22 17 53 37)(5 52 29 16 45 30)(6 41 36 15 56 23)(7 49 24 14 48 35)(8 57 31 13 40 28)(9 46 38 12 51 21)(10 54 26 11 43 33)
G:=sub<Sym(57)| (1,39,20)(2,40,21)(3,41,22)(4,42,23)(5,43,24)(6,44,25)(7,45,26)(8,46,27)(9,47,28)(10,48,29)(11,49,30)(12,50,31)(13,51,32)(14,52,33)(15,53,34)(16,54,35)(17,55,36)(18,56,37)(19,57,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57), (1,39,20)(2,47,27,19,50,32)(3,55,34,18,42,25)(4,44,22,17,53,37)(5,52,29,16,45,30)(6,41,36,15,56,23)(7,49,24,14,48,35)(8,57,31,13,40,28)(9,46,38,12,51,21)(10,54,26,11,43,33)>;
G:=Group( (1,39,20)(2,40,21)(3,41,22)(4,42,23)(5,43,24)(6,44,25)(7,45,26)(8,46,27)(9,47,28)(10,48,29)(11,49,30)(12,50,31)(13,51,32)(14,52,33)(15,53,34)(16,54,35)(17,55,36)(18,56,37)(19,57,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57), (1,39,20)(2,47,27,19,50,32)(3,55,34,18,42,25)(4,44,22,17,53,37)(5,52,29,16,45,30)(6,41,36,15,56,23)(7,49,24,14,48,35)(8,57,31,13,40,28)(9,46,38,12,51,21)(10,54,26,11,43,33) );
G=PermutationGroup([[(1,39,20),(2,40,21),(3,41,22),(4,42,23),(5,43,24),(6,44,25),(7,45,26),(8,46,27),(9,47,28),(10,48,29),(11,49,30),(12,50,31),(13,51,32),(14,52,33),(15,53,34),(16,54,35),(17,55,36),(18,56,37),(19,57,38)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)], [(1,39,20),(2,47,27,19,50,32),(3,55,34,18,42,25),(4,44,22,17,53,37),(5,52,29,16,45,30),(6,41,36,15,56,23),(7,49,24,14,48,35),(8,57,31,13,40,28),(9,46,38,12,51,21),(10,54,26,11,43,33)]])
Matrix representation of C3×C19⋊C6 ►in GL6(𝔽229)
134 | 0 | 0 | 0 | 0 | 0 |
0 | 134 | 0 | 0 | 0 | 0 |
0 | 0 | 134 | 0 | 0 | 0 |
0 | 0 | 0 | 134 | 0 | 0 |
0 | 0 | 0 | 0 | 134 | 0 |
0 | 0 | 0 | 0 | 0 | 134 |
91 | 9 | 220 | 138 | 109 | 228 |
92 | 9 | 220 | 138 | 109 | 228 |
91 | 10 | 220 | 138 | 109 | 228 |
91 | 9 | 221 | 138 | 109 | 228 |
91 | 9 | 220 | 139 | 109 | 228 |
91 | 9 | 220 | 138 | 110 | 228 |
168 | 72 | 64 | 138 | 73 | 50 |
0 | 0 | 0 | 0 | 134 | 0 |
138 | 53 | 65 | 80 | 88 | 179 |
222 | 91 | 72 | 141 | 77 | 134 |
0 | 0 | 134 | 0 | 0 | 0 |
77 | 141 | 72 | 91 | 222 | 84 |
G:=sub<GL(6,GF(229))| [134,0,0,0,0,0,0,134,0,0,0,0,0,0,134,0,0,0,0,0,0,134,0,0,0,0,0,0,134,0,0,0,0,0,0,134],[91,92,91,91,91,91,9,9,10,9,9,9,220,220,220,221,220,220,138,138,138,138,139,138,109,109,109,109,109,110,228,228,228,228,228,228],[168,0,138,222,0,77,72,0,53,91,0,141,64,0,65,72,134,72,138,0,80,141,0,91,73,134,88,77,0,222,50,0,179,134,0,84] >;
C3×C19⋊C6 in GAP, Magma, Sage, TeX
C_3\times C_{19}\rtimes C_6
% in TeX
G:=Group("C3xC19:C6");
// GroupNames label
G:=SmallGroup(342,9);
// by ID
G=gap.SmallGroup(342,9);
# by ID
G:=PCGroup([4,-2,-3,-3,-19,5187,1015]);
// Polycyclic
G:=Group<a,b,c|a^3=b^19=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^12>;
// generators/relations
Export
Subgroup lattice of C3×C19⋊C6 in TeX
Character table of C3×C19⋊C6 in TeX