Copied to
clipboard

G = C3×C19⋊C6order 342 = 2·32·19

Direct product of C3 and C19⋊C6

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: C3×C19⋊C6, C572C6, D19⋊C32, C19⋊C3⋊C6, C19⋊(C3×C6), (C3×D19)⋊C3, (C3×C19⋊C3)⋊2C2, SmallGroup(342,9)

Series: Derived Chief Lower central Upper central

C1C19 — C3×C19⋊C6
C1C19C57C3×C19⋊C3 — C3×C19⋊C6
C19 — C3×C19⋊C6
C1C3

Generators and relations for C3×C19⋊C6
 G = < a,b,c | a3=b19=c6=1, ab=ba, ac=ca, cbc-1=b12 >

19C2
19C3
19C3
19C3
19C6
19C6
19C6
19C6
19C32
19C3×C6

Character table of C3×C19⋊C6

 class 123A3B3C3D3E3F3G3H6A6B6C6D6E6F6G6H19A19B19C57A57B57C57D57E57F
 size 119111919191919191919191919191919666666666
ρ1111111111111111111111111111    trivial
ρ21-111111111-1-1-1-1-1-1-1-1111111111    linear of order 2
ρ31-1ζ32ζ3ζ3ζ321ζ3ζ321ζ6ζ65ζ6-1ζ65ζ6-1ζ65111ζ32ζ32ζ32ζ3ζ3ζ3    linear of order 6
ρ41-1ζ32ζ3ζ321ζ321ζ3ζ3ζ65ζ65ζ6ζ65ζ6-1ζ6-1111ζ32ζ32ζ32ζ3ζ3ζ3    linear of order 6
ρ51111ζ32ζ32ζ3ζ3ζ3ζ32ζ311ζ32ζ32ζ32ζ3ζ3111111111    linear of order 3
ρ61111ζ3ζ3ζ32ζ32ζ32ζ3ζ3211ζ3ζ3ζ3ζ32ζ32111111111    linear of order 3
ρ711ζ3ζ32ζ32ζ31ζ32ζ31ζ3ζ32ζ31ζ32ζ31ζ32111ζ3ζ3ζ3ζ32ζ32ζ32    linear of order 3
ρ81-1ζ3ζ32ζ31ζ31ζ32ζ32ζ6ζ6ζ65ζ6ζ65-1ζ65-1111ζ3ζ3ζ3ζ32ζ32ζ32    linear of order 6
ρ911ζ32ζ3ζ321ζ321ζ3ζ3ζ3ζ3ζ32ζ3ζ321ζ321111ζ32ζ32ζ32ζ3ζ3ζ3    linear of order 3
ρ101-1ζ3ζ321ζ32ζ32ζ31ζ3-1ζ6ζ65ζ65-1ζ6ζ6ζ65111ζ3ζ3ζ3ζ32ζ32ζ32    linear of order 6
ρ1111ζ32ζ31ζ3ζ3ζ321ζ321ζ3ζ32ζ321ζ3ζ3ζ32111ζ32ζ32ζ32ζ3ζ3ζ3    linear of order 3
ρ1211ζ3ζ321ζ32ζ32ζ31ζ31ζ32ζ3ζ31ζ32ζ32ζ3111ζ3ζ3ζ3ζ32ζ32ζ32    linear of order 3
ρ131-111ζ3ζ3ζ32ζ32ζ32ζ3ζ6-1-1ζ65ζ65ζ65ζ6ζ6111111111    linear of order 6
ρ141-1ζ32ζ31ζ3ζ3ζ321ζ32-1ζ65ζ6ζ6-1ζ65ζ65ζ6111ζ32ζ32ζ32ζ3ζ3ζ3    linear of order 6
ρ151-111ζ32ζ32ζ3ζ3ζ3ζ32ζ65-1-1ζ6ζ6ζ6ζ65ζ65111111111    linear of order 6
ρ1611ζ3ζ32ζ31ζ31ζ32ζ32ζ32ζ32ζ3ζ32ζ31ζ31111ζ3ζ3ζ3ζ32ζ32ζ32    linear of order 3
ρ1711ζ32ζ3ζ3ζ321ζ3ζ321ζ32ζ3ζ321ζ3ζ321ζ3111ζ32ζ32ζ32ζ3ζ3ζ3    linear of order 3
ρ181-1ζ3ζ32ζ32ζ31ζ32ζ31ζ65ζ6ζ65-1ζ6ζ65-1ζ6111ζ3ζ3ζ3ζ32ζ32ζ32    linear of order 6
ρ19606600000000000000ζ191719161914195193192ζ191519131910199196194ζ19181912191119819719ζ191719161914195193192ζ19181912191119819719ζ191519131910199196194ζ191719161914195193192ζ191519131910199196194ζ19181912191119819719    orthogonal lifted from C19⋊C6
ρ20606600000000000000ζ191519131910199196194ζ19181912191119819719ζ191719161914195193192ζ191519131910199196194ζ191719161914195193192ζ19181912191119819719ζ191519131910199196194ζ19181912191119819719ζ191719161914195193192    orthogonal lifted from C19⋊C6
ρ21606600000000000000ζ19181912191119819719ζ191719161914195193192ζ191519131910199196194ζ19181912191119819719ζ191519131910199196194ζ191719161914195193192ζ19181912191119819719ζ191719161914195193192ζ191519131910199196194    orthogonal lifted from C19⋊C6
ρ2260-3-3-3-3+3-300000000000000ζ191519131910199196194ζ19181912191119819719ζ191719161914195193192ζ32ζ191532ζ191332ζ191032ζ19932ζ19632ζ194ζ32ζ191732ζ191632ζ191432ζ19532ζ19332ζ192ζ32ζ191832ζ191232ζ191132ζ19832ζ19732ζ19ζ3ζ19153ζ19133ζ19103ζ1993ζ1963ζ194ζ3ζ19183ζ19123ζ19113ζ1983ζ1973ζ19ζ3ζ19173ζ19163ζ19143ζ1953ζ1933ζ192    complex faithful
ρ2360-3+3-3-3-3-300000000000000ζ19181912191119819719ζ191719161914195193192ζ191519131910199196194ζ3ζ19183ζ19123ζ19113ζ1983ζ1973ζ19ζ3ζ19153ζ19133ζ19103ζ1993ζ1963ζ194ζ3ζ19173ζ19163ζ19143ζ1953ζ1933ζ192ζ32ζ191832ζ191232ζ191132ζ19832ζ19732ζ19ζ32ζ191732ζ191632ζ191432ζ19532ζ19332ζ192ζ32ζ191532ζ191332ζ191032ζ19932ζ19632ζ194    complex faithful
ρ2460-3-3-3-3+3-300000000000000ζ191719161914195193192ζ191519131910199196194ζ19181912191119819719ζ32ζ191732ζ191632ζ191432ζ19532ζ19332ζ192ζ32ζ191832ζ191232ζ191132ζ19832ζ19732ζ19ζ32ζ191532ζ191332ζ191032ζ19932ζ19632ζ194ζ3ζ19173ζ19163ζ19143ζ1953ζ1933ζ192ζ3ζ19153ζ19133ζ19103ζ1993ζ1963ζ194ζ3ζ19183ζ19123ζ19113ζ1983ζ1973ζ19    complex faithful
ρ2560-3-3-3-3+3-300000000000000ζ19181912191119819719ζ191719161914195193192ζ191519131910199196194ζ32ζ191832ζ191232ζ191132ζ19832ζ19732ζ19ζ32ζ191532ζ191332ζ191032ζ19932ζ19632ζ194ζ32ζ191732ζ191632ζ191432ζ19532ζ19332ζ192ζ3ζ19183ζ19123ζ19113ζ1983ζ1973ζ19ζ3ζ19173ζ19163ζ19143ζ1953ζ1933ζ192ζ3ζ19153ζ19133ζ19103ζ1993ζ1963ζ194    complex faithful
ρ2660-3+3-3-3-3-300000000000000ζ191719161914195193192ζ191519131910199196194ζ19181912191119819719ζ3ζ19173ζ19163ζ19143ζ1953ζ1933ζ192ζ3ζ19183ζ19123ζ19113ζ1983ζ1973ζ19ζ3ζ19153ζ19133ζ19103ζ1993ζ1963ζ194ζ32ζ191732ζ191632ζ191432ζ19532ζ19332ζ192ζ32ζ191532ζ191332ζ191032ζ19932ζ19632ζ194ζ32ζ191832ζ191232ζ191132ζ19832ζ19732ζ19    complex faithful
ρ2760-3+3-3-3-3-300000000000000ζ191519131910199196194ζ19181912191119819719ζ191719161914195193192ζ3ζ19153ζ19133ζ19103ζ1993ζ1963ζ194ζ3ζ19173ζ19163ζ19143ζ1953ζ1933ζ192ζ3ζ19183ζ19123ζ19113ζ1983ζ1973ζ19ζ32ζ191532ζ191332ζ191032ζ19932ζ19632ζ194ζ32ζ191832ζ191232ζ191132ζ19832ζ19732ζ19ζ32ζ191732ζ191632ζ191432ζ19532ζ19332ζ192    complex faithful

Smallest permutation representation of C3×C19⋊C6
On 57 points
Generators in S57
(1 39 20)(2 40 21)(3 41 22)(4 42 23)(5 43 24)(6 44 25)(7 45 26)(8 46 27)(9 47 28)(10 48 29)(11 49 30)(12 50 31)(13 51 32)(14 52 33)(15 53 34)(16 54 35)(17 55 36)(18 56 37)(19 57 38)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)
(1 39 20)(2 47 27 19 50 32)(3 55 34 18 42 25)(4 44 22 17 53 37)(5 52 29 16 45 30)(6 41 36 15 56 23)(7 49 24 14 48 35)(8 57 31 13 40 28)(9 46 38 12 51 21)(10 54 26 11 43 33)

G:=sub<Sym(57)| (1,39,20)(2,40,21)(3,41,22)(4,42,23)(5,43,24)(6,44,25)(7,45,26)(8,46,27)(9,47,28)(10,48,29)(11,49,30)(12,50,31)(13,51,32)(14,52,33)(15,53,34)(16,54,35)(17,55,36)(18,56,37)(19,57,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57), (1,39,20)(2,47,27,19,50,32)(3,55,34,18,42,25)(4,44,22,17,53,37)(5,52,29,16,45,30)(6,41,36,15,56,23)(7,49,24,14,48,35)(8,57,31,13,40,28)(9,46,38,12,51,21)(10,54,26,11,43,33)>;

G:=Group( (1,39,20)(2,40,21)(3,41,22)(4,42,23)(5,43,24)(6,44,25)(7,45,26)(8,46,27)(9,47,28)(10,48,29)(11,49,30)(12,50,31)(13,51,32)(14,52,33)(15,53,34)(16,54,35)(17,55,36)(18,56,37)(19,57,38), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57), (1,39,20)(2,47,27,19,50,32)(3,55,34,18,42,25)(4,44,22,17,53,37)(5,52,29,16,45,30)(6,41,36,15,56,23)(7,49,24,14,48,35)(8,57,31,13,40,28)(9,46,38,12,51,21)(10,54,26,11,43,33) );

G=PermutationGroup([[(1,39,20),(2,40,21),(3,41,22),(4,42,23),(5,43,24),(6,44,25),(7,45,26),(8,46,27),(9,47,28),(10,48,29),(11,49,30),(12,50,31),(13,51,32),(14,52,33),(15,53,34),(16,54,35),(17,55,36),(18,56,37),(19,57,38)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)], [(1,39,20),(2,47,27,19,50,32),(3,55,34,18,42,25),(4,44,22,17,53,37),(5,52,29,16,45,30),(6,41,36,15,56,23),(7,49,24,14,48,35),(8,57,31,13,40,28),(9,46,38,12,51,21),(10,54,26,11,43,33)]])

Matrix representation of C3×C19⋊C6 in GL6(𝔽229)

13400000
01340000
00134000
00013400
00001340
00000134
,
919220138109228
929220138109228
9110220138109228
919221138109228
919220139109228
919220138110228
,
16872641387350
00001340
13853658088179
222917214177134
00134000
77141729122284

G:=sub<GL(6,GF(229))| [134,0,0,0,0,0,0,134,0,0,0,0,0,0,134,0,0,0,0,0,0,134,0,0,0,0,0,0,134,0,0,0,0,0,0,134],[91,92,91,91,91,91,9,9,10,9,9,9,220,220,220,221,220,220,138,138,138,138,139,138,109,109,109,109,109,110,228,228,228,228,228,228],[168,0,138,222,0,77,72,0,53,91,0,141,64,0,65,72,134,72,138,0,80,141,0,91,73,134,88,77,0,222,50,0,179,134,0,84] >;

C3×C19⋊C6 in GAP, Magma, Sage, TeX

C_3\times C_{19}\rtimes C_6
% in TeX

G:=Group("C3xC19:C6");
// GroupNames label

G:=SmallGroup(342,9);
// by ID

G=gap.SmallGroup(342,9);
# by ID

G:=PCGroup([4,-2,-3,-3,-19,5187,1015]);
// Polycyclic

G:=Group<a,b,c|a^3=b^19=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^12>;
// generators/relations

Export

Subgroup lattice of C3×C19⋊C6 in TeX
Character table of C3×C19⋊C6 in TeX

׿
×
𝔽