Copied to
clipboard

G = S3×C19⋊C3order 342 = 2·32·19

Direct product of S3 and C19⋊C3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: S3×C19⋊C3, C573C6, (S3×C19)⋊C3, C192(C3×S3), C3⋊(C2×C19⋊C3), (C3×C19⋊C3)⋊3C2, SmallGroup(342,10)

Series: Derived Chief Lower central Upper central

C1C57 — S3×C19⋊C3
C1C19C57C3×C19⋊C3 — S3×C19⋊C3
C57 — S3×C19⋊C3
C1

Generators and relations for S3×C19⋊C3
 G = < a,b,c,d | a3=b2=c19=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c11 >

3C2
19C3
38C3
57C6
19C32
3C38
2C19⋊C3
19C3×S3
3C2×C19⋊C3

Character table of S3×C19⋊C3

 class 123A3B3C3D3E6A6B19A19B19C19D19E19F38A38B38C38D38E38F57A57B57C57D57E57F
 size 132191938385757333333999999666666
ρ1111111111111111111111111111    trivial
ρ21-111111-1-1111111-1-1-1-1-1-1111111    linear of order 2
ρ3111ζ3ζ32ζ3ζ32ζ3ζ32111111111111111111    linear of order 3
ρ4111ζ32ζ3ζ32ζ3ζ32ζ3111111111111111111    linear of order 3
ρ51-11ζ3ζ32ζ3ζ32ζ65ζ6111111-1-1-1-1-1-1111111    linear of order 6
ρ61-11ζ32ζ3ζ32ζ3ζ6ζ65111111-1-1-1-1-1-1111111    linear of order 6
ρ720-122-1-100222222000000-1-1-1-1-1-1    orthogonal lifted from S3
ρ820-1-1+-3-1--3ζ65ζ600222222000000-1-1-1-1-1-1    complex lifted from C3×S3
ρ920-1-1--3-1+-3ζ6ζ6500222222000000-1-1-1-1-1-1    complex lifted from C3×S3
ρ10333000000ζ1914193192ζ199196194ζ19181912198ζ191519131910ζ19171916195ζ191119719ζ191119719ζ199196194ζ19181912198ζ191519131910ζ19171916195ζ1914193192ζ199196194ζ19181912198ζ191519131910ζ19171916195ζ191119719ζ1914193192    complex lifted from C19⋊C3
ρ11333000000ζ19171916195ζ191519131910ζ191119719ζ199196194ζ1914193192ζ19181912198ζ19181912198ζ191519131910ζ191119719ζ199196194ζ1914193192ζ19171916195ζ191519131910ζ191119719ζ199196194ζ1914193192ζ19181912198ζ19171916195    complex lifted from C19⋊C3
ρ123-33000000ζ199196194ζ19181912198ζ19171916195ζ191119719ζ191519131910ζ191419319219141931921918191219819171916195191119719191519131910199196194ζ19181912198ζ19171916195ζ191119719ζ191519131910ζ1914193192ζ199196194    complex lifted from C2×C19⋊C3
ρ13333000000ζ19181912198ζ19171916195ζ191519131910ζ1914193192ζ191119719ζ199196194ζ199196194ζ19171916195ζ191519131910ζ1914193192ζ191119719ζ19181912198ζ19171916195ζ191519131910ζ1914193192ζ191119719ζ199196194ζ19181912198    complex lifted from C19⋊C3
ρ143-33000000ζ191519131910ζ191119719ζ1914193192ζ19181912198ζ199196194ζ1917191619519171916195191119719191419319219181912198199196194191519131910ζ191119719ζ1914193192ζ19181912198ζ199196194ζ19171916195ζ191519131910    complex lifted from C2×C19⋊C3
ρ153-33000000ζ1914193192ζ199196194ζ19181912198ζ191519131910ζ19171916195ζ19111971919111971919919619419181912198191519131910191719161951914193192ζ199196194ζ19181912198ζ191519131910ζ19171916195ζ191119719ζ1914193192    complex lifted from C2×C19⋊C3
ρ163-33000000ζ19181912198ζ19171916195ζ191519131910ζ1914193192ζ191119719ζ19919619419919619419171916195191519131910191419319219111971919181912198ζ19171916195ζ191519131910ζ1914193192ζ191119719ζ199196194ζ19181912198    complex lifted from C2×C19⋊C3
ρ17333000000ζ199196194ζ19181912198ζ19171916195ζ191119719ζ191519131910ζ1914193192ζ1914193192ζ19181912198ζ19171916195ζ191119719ζ191519131910ζ199196194ζ19181912198ζ19171916195ζ191119719ζ191519131910ζ1914193192ζ199196194    complex lifted from C19⋊C3
ρ183-33000000ζ19171916195ζ191519131910ζ191119719ζ199196194ζ1914193192ζ1918191219819181912198191519131910191119719199196194191419319219171916195ζ191519131910ζ191119719ζ199196194ζ1914193192ζ19181912198ζ19171916195    complex lifted from C2×C19⋊C3
ρ193-33000000ζ191119719ζ1914193192ζ199196194ζ19171916195ζ19181912198ζ19151913191019151913191019141931921991961941917191619519181912198191119719ζ1914193192ζ199196194ζ19171916195ζ19181912198ζ191519131910ζ191119719    complex lifted from C2×C19⋊C3
ρ20333000000ζ191119719ζ1914193192ζ199196194ζ19171916195ζ19181912198ζ191519131910ζ191519131910ζ1914193192ζ199196194ζ19171916195ζ19181912198ζ191119719ζ1914193192ζ199196194ζ19171916195ζ19181912198ζ191519131910ζ191119719    complex lifted from C19⋊C3
ρ21333000000ζ191519131910ζ191119719ζ1914193192ζ19181912198ζ199196194ζ19171916195ζ19171916195ζ191119719ζ1914193192ζ19181912198ζ199196194ζ191519131910ζ191119719ζ1914193192ζ19181912198ζ199196194ζ19171916195ζ191519131910    complex lifted from C19⋊C3
ρ2260-3000000199+2ζ196+2ζ1941918+2ζ1912+2ζ1981917+2ζ1916+2ζ1951911+2ζ197+2ζ191915+2ζ1913+2ζ19101914+2ζ193+2ζ19200000019181912198191719161951911197191915191319101914193192199196194    complex faithful
ρ2360-30000001911+2ζ197+2ζ191914+2ζ193+2ζ192199+2ζ196+2ζ1941917+2ζ1916+2ζ1951918+2ζ1912+2ζ1981915+2ζ1913+2ζ191000000019141931921991961941917191619519181912198191519131910191119719    complex faithful
ρ2460-30000001914+2ζ193+2ζ192199+2ζ196+2ζ1941918+2ζ1912+2ζ1981915+2ζ1913+2ζ19101917+2ζ1916+2ζ1951911+2ζ197+2ζ1900000019919619419181912198191519131910191719161951911197191914193192    complex faithful
ρ2560-30000001915+2ζ1913+2ζ19101911+2ζ197+2ζ191914+2ζ193+2ζ1921918+2ζ1912+2ζ198199+2ζ196+2ζ1941917+2ζ1916+2ζ19500000019111971919141931921918191219819919619419171916195191519131910    complex faithful
ρ2660-30000001918+2ζ1912+2ζ1981917+2ζ1916+2ζ1951915+2ζ1913+2ζ19101914+2ζ193+2ζ1921911+2ζ197+2ζ19199+2ζ196+2ζ19400000019171916195191519131910191419319219111971919919619419181912198    complex faithful
ρ2760-30000001917+2ζ1916+2ζ1951915+2ζ1913+2ζ19101911+2ζ197+2ζ19199+2ζ196+2ζ1941914+2ζ193+2ζ1921918+2ζ1912+2ζ19800000019151913191019111971919919619419141931921918191219819171916195    complex faithful

Smallest permutation representation of S3×C19⋊C3
On 57 points
Generators in S57
(1 20 39)(2 21 40)(3 22 41)(4 23 42)(5 24 43)(6 25 44)(7 26 45)(8 27 46)(9 28 47)(10 29 48)(11 30 49)(12 31 50)(13 32 51)(14 33 52)(15 34 53)(16 35 54)(17 36 55)(18 37 56)(19 38 57)
(20 39)(21 40)(22 41)(23 42)(24 43)(25 44)(26 45)(27 46)(28 47)(29 48)(30 49)(31 50)(32 51)(33 52)(34 53)(35 54)(36 55)(37 56)(38 57)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)
(2 8 12)(3 15 4)(5 10 7)(6 17 18)(9 19 13)(11 14 16)(21 27 31)(22 34 23)(24 29 26)(25 36 37)(28 38 32)(30 33 35)(40 46 50)(41 53 42)(43 48 45)(44 55 56)(47 57 51)(49 52 54)

G:=sub<Sym(57)| (1,20,39)(2,21,40)(3,22,41)(4,23,42)(5,24,43)(6,25,44)(7,26,45)(8,27,46)(9,28,47)(10,29,48)(11,30,49)(12,31,50)(13,32,51)(14,33,52)(15,34,53)(16,35,54)(17,36,55)(18,37,56)(19,38,57), (20,39)(21,40)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,49)(31,50)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57), (2,8,12)(3,15,4)(5,10,7)(6,17,18)(9,19,13)(11,14,16)(21,27,31)(22,34,23)(24,29,26)(25,36,37)(28,38,32)(30,33,35)(40,46,50)(41,53,42)(43,48,45)(44,55,56)(47,57,51)(49,52,54)>;

G:=Group( (1,20,39)(2,21,40)(3,22,41)(4,23,42)(5,24,43)(6,25,44)(7,26,45)(8,27,46)(9,28,47)(10,29,48)(11,30,49)(12,31,50)(13,32,51)(14,33,52)(15,34,53)(16,35,54)(17,36,55)(18,37,56)(19,38,57), (20,39)(21,40)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,49)(31,50)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57), (2,8,12)(3,15,4)(5,10,7)(6,17,18)(9,19,13)(11,14,16)(21,27,31)(22,34,23)(24,29,26)(25,36,37)(28,38,32)(30,33,35)(40,46,50)(41,53,42)(43,48,45)(44,55,56)(47,57,51)(49,52,54) );

G=PermutationGroup([[(1,20,39),(2,21,40),(3,22,41),(4,23,42),(5,24,43),(6,25,44),(7,26,45),(8,27,46),(9,28,47),(10,29,48),(11,30,49),(12,31,50),(13,32,51),(14,33,52),(15,34,53),(16,35,54),(17,36,55),(18,37,56),(19,38,57)], [(20,39),(21,40),(22,41),(23,42),(24,43),(25,44),(26,45),(27,46),(28,47),(29,48),(30,49),(31,50),(32,51),(33,52),(34,53),(35,54),(36,55),(37,56),(38,57)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)], [(2,8,12),(3,15,4),(5,10,7),(6,17,18),(9,19,13),(11,14,16),(21,27,31),(22,34,23),(24,29,26),(25,36,37),(28,38,32),(30,33,35),(40,46,50),(41,53,42),(43,48,45),(44,55,56),(47,57,51),(49,52,54)]])

Matrix representation of S3×C19⋊C3 in GL5(𝔽229)

0228000
1228000
00100
00010
00001
,
01000
10000
00100
00010
00001
,
10000
01000
006820444
001070
0001207
,
1340000
0134000
007318142
001254844
00166188108

G:=sub<GL(5,GF(229))| [0,1,0,0,0,228,228,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,68,1,0,0,0,204,0,1,0,0,44,70,207],[134,0,0,0,0,0,134,0,0,0,0,0,73,125,166,0,0,181,48,188,0,0,42,44,108] >;

S3×C19⋊C3 in GAP, Magma, Sage, TeX

S_3\times C_{19}\rtimes C_3
% in TeX

G:=Group("S3xC19:C3");
// GroupNames label

G:=SmallGroup(342,10);
// by ID

G=gap.SmallGroup(342,10);
# by ID

G:=PCGroup([4,-2,-3,-3,-19,146,1015]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^19=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^11>;
// generators/relations

Export

Subgroup lattice of S3×C19⋊C3 in TeX
Character table of S3×C19⋊C3 in TeX

׿
×
𝔽