direct product, metacyclic, supersoluble, monomial, A-group
Aliases: S3×C19⋊C3, C57⋊3C6, (S3×C19)⋊C3, C19⋊2(C3×S3), C3⋊(C2×C19⋊C3), (C3×C19⋊C3)⋊3C2, SmallGroup(342,10)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C19 — C57 — C3×C19⋊C3 — S3×C19⋊C3 |
C57 — S3×C19⋊C3 |
Generators and relations for S3×C19⋊C3
G = < a,b,c,d | a3=b2=c19=d3=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c11 >
Character table of S3×C19⋊C3
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 6A | 6B | 19A | 19B | 19C | 19D | 19E | 19F | 38A | 38B | 38C | 38D | 38E | 38F | 57A | 57B | 57C | 57D | 57E | 57F | |
size | 1 | 3 | 2 | 19 | 19 | 38 | 38 | 57 | 57 | 3 | 3 | 3 | 3 | 3 | 3 | 9 | 9 | 9 | 9 | 9 | 9 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ4 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ5 | 1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ6 | 1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ7 | 2 | 0 | -1 | 2 | 2 | -1 | -1 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | -1 | -1+√-3 | -1-√-3 | ζ65 | ζ6 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ9 | 2 | 0 | -1 | -1-√-3 | -1+√-3 | ζ6 | ζ65 | 0 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | complex lifted from C3×S3 |
ρ10 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1917+ζ1916+ζ195 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | complex lifted from C19⋊C3 |
ρ11 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ1914+ζ193+ζ192 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | complex lifted from C19⋊C3 |
ρ12 | 3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | -ζ1914-ζ193-ζ192 | -ζ1918-ζ1912-ζ198 | -ζ1917-ζ1916-ζ195 | -ζ1911-ζ197-ζ19 | -ζ1915-ζ1913-ζ1910 | -ζ199-ζ196-ζ194 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | complex lifted from C2×C19⋊C3 |
ρ13 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ1911+ζ197+ζ19 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | complex lifted from C19⋊C3 |
ρ14 | 3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | -ζ1917-ζ1916-ζ195 | -ζ1911-ζ197-ζ19 | -ζ1914-ζ193-ζ192 | -ζ1918-ζ1912-ζ198 | -ζ199-ζ196-ζ194 | -ζ1915-ζ1913-ζ1910 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | complex lifted from C2×C19⋊C3 |
ρ15 | 3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | -ζ1911-ζ197-ζ19 | -ζ199-ζ196-ζ194 | -ζ1918-ζ1912-ζ198 | -ζ1915-ζ1913-ζ1910 | -ζ1917-ζ1916-ζ195 | -ζ1914-ζ193-ζ192 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | complex lifted from C2×C19⋊C3 |
ρ16 | 3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | -ζ199-ζ196-ζ194 | -ζ1917-ζ1916-ζ195 | -ζ1915-ζ1913-ζ1910 | -ζ1914-ζ193-ζ192 | -ζ1911-ζ197-ζ19 | -ζ1918-ζ1912-ζ198 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | complex lifted from C2×C19⋊C3 |
ρ17 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1915+ζ1913+ζ1910 | ζ199+ζ196+ζ194 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | complex lifted from C19⋊C3 |
ρ18 | 3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | -ζ1918-ζ1912-ζ198 | -ζ1915-ζ1913-ζ1910 | -ζ1911-ζ197-ζ19 | -ζ199-ζ196-ζ194 | -ζ1914-ζ193-ζ192 | -ζ1917-ζ1916-ζ195 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | ζ199+ζ196+ζ194 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ1917+ζ1916+ζ195 | complex lifted from C2×C19⋊C3 |
ρ19 | 3 | -3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | -ζ1915-ζ1913-ζ1910 | -ζ1914-ζ193-ζ192 | -ζ199-ζ196-ζ194 | -ζ1917-ζ1916-ζ195 | -ζ1918-ζ1912-ζ198 | -ζ1911-ζ197-ζ19 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | complex lifted from C2×C19⋊C3 |
ρ20 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1915+ζ1913+ζ1910 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1918+ζ1912+ζ198 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1918+ζ1912+ζ198 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | complex lifted from C19⋊C3 |
ρ21 | 3 | 3 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1917+ζ1916+ζ195 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ199+ζ196+ζ194 | ζ1915+ζ1913+ζ1910 | ζ1911+ζ197+ζ19 | ζ1914+ζ193+ζ192 | ζ1918+ζ1912+ζ198 | ζ199+ζ196+ζ194 | ζ1917+ζ1916+ζ195 | ζ1915+ζ1913+ζ1910 | complex lifted from C19⋊C3 |
ρ22 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ199+2ζ196+2ζ194 | 2ζ1918+2ζ1912+2ζ198 | 2ζ1917+2ζ1916+2ζ195 | 2ζ1911+2ζ197+2ζ19 | 2ζ1915+2ζ1913+2ζ1910 | 2ζ1914+2ζ193+2ζ192 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ1918-ζ1912-ζ198 | -ζ1917-ζ1916-ζ195 | -ζ1911-ζ197-ζ19 | -ζ1915-ζ1913-ζ1910 | -ζ1914-ζ193-ζ192 | -ζ199-ζ196-ζ194 | complex faithful |
ρ23 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ1911+2ζ197+2ζ19 | 2ζ1914+2ζ193+2ζ192 | 2ζ199+2ζ196+2ζ194 | 2ζ1917+2ζ1916+2ζ195 | 2ζ1918+2ζ1912+2ζ198 | 2ζ1915+2ζ1913+2ζ1910 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ1914-ζ193-ζ192 | -ζ199-ζ196-ζ194 | -ζ1917-ζ1916-ζ195 | -ζ1918-ζ1912-ζ198 | -ζ1915-ζ1913-ζ1910 | -ζ1911-ζ197-ζ19 | complex faithful |
ρ24 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ1914+2ζ193+2ζ192 | 2ζ199+2ζ196+2ζ194 | 2ζ1918+2ζ1912+2ζ198 | 2ζ1915+2ζ1913+2ζ1910 | 2ζ1917+2ζ1916+2ζ195 | 2ζ1911+2ζ197+2ζ19 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ199-ζ196-ζ194 | -ζ1918-ζ1912-ζ198 | -ζ1915-ζ1913-ζ1910 | -ζ1917-ζ1916-ζ195 | -ζ1911-ζ197-ζ19 | -ζ1914-ζ193-ζ192 | complex faithful |
ρ25 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ1915+2ζ1913+2ζ1910 | 2ζ1911+2ζ197+2ζ19 | 2ζ1914+2ζ193+2ζ192 | 2ζ1918+2ζ1912+2ζ198 | 2ζ199+2ζ196+2ζ194 | 2ζ1917+2ζ1916+2ζ195 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ1911-ζ197-ζ19 | -ζ1914-ζ193-ζ192 | -ζ1918-ζ1912-ζ198 | -ζ199-ζ196-ζ194 | -ζ1917-ζ1916-ζ195 | -ζ1915-ζ1913-ζ1910 | complex faithful |
ρ26 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ1918+2ζ1912+2ζ198 | 2ζ1917+2ζ1916+2ζ195 | 2ζ1915+2ζ1913+2ζ1910 | 2ζ1914+2ζ193+2ζ192 | 2ζ1911+2ζ197+2ζ19 | 2ζ199+2ζ196+2ζ194 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ1917-ζ1916-ζ195 | -ζ1915-ζ1913-ζ1910 | -ζ1914-ζ193-ζ192 | -ζ1911-ζ197-ζ19 | -ζ199-ζ196-ζ194 | -ζ1918-ζ1912-ζ198 | complex faithful |
ρ27 | 6 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 2ζ1917+2ζ1916+2ζ195 | 2ζ1915+2ζ1913+2ζ1910 | 2ζ1911+2ζ197+2ζ19 | 2ζ199+2ζ196+2ζ194 | 2ζ1914+2ζ193+2ζ192 | 2ζ1918+2ζ1912+2ζ198 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ1915-ζ1913-ζ1910 | -ζ1911-ζ197-ζ19 | -ζ199-ζ196-ζ194 | -ζ1914-ζ193-ζ192 | -ζ1918-ζ1912-ζ198 | -ζ1917-ζ1916-ζ195 | complex faithful |
(1 20 39)(2 21 40)(3 22 41)(4 23 42)(5 24 43)(6 25 44)(7 26 45)(8 27 46)(9 28 47)(10 29 48)(11 30 49)(12 31 50)(13 32 51)(14 33 52)(15 34 53)(16 35 54)(17 36 55)(18 37 56)(19 38 57)
(20 39)(21 40)(22 41)(23 42)(24 43)(25 44)(26 45)(27 46)(28 47)(29 48)(30 49)(31 50)(32 51)(33 52)(34 53)(35 54)(36 55)(37 56)(38 57)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)(20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38)(39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57)
(2 8 12)(3 15 4)(5 10 7)(6 17 18)(9 19 13)(11 14 16)(21 27 31)(22 34 23)(24 29 26)(25 36 37)(28 38 32)(30 33 35)(40 46 50)(41 53 42)(43 48 45)(44 55 56)(47 57 51)(49 52 54)
G:=sub<Sym(57)| (1,20,39)(2,21,40)(3,22,41)(4,23,42)(5,24,43)(6,25,44)(7,26,45)(8,27,46)(9,28,47)(10,29,48)(11,30,49)(12,31,50)(13,32,51)(14,33,52)(15,34,53)(16,35,54)(17,36,55)(18,37,56)(19,38,57), (20,39)(21,40)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,49)(31,50)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57), (2,8,12)(3,15,4)(5,10,7)(6,17,18)(9,19,13)(11,14,16)(21,27,31)(22,34,23)(24,29,26)(25,36,37)(28,38,32)(30,33,35)(40,46,50)(41,53,42)(43,48,45)(44,55,56)(47,57,51)(49,52,54)>;
G:=Group( (1,20,39)(2,21,40)(3,22,41)(4,23,42)(5,24,43)(6,25,44)(7,26,45)(8,27,46)(9,28,47)(10,29,48)(11,30,49)(12,31,50)(13,32,51)(14,33,52)(15,34,53)(16,35,54)(17,36,55)(18,37,56)(19,38,57), (20,39)(21,40)(22,41)(23,42)(24,43)(25,44)(26,45)(27,46)(28,47)(29,48)(30,49)(31,50)(32,51)(33,52)(34,53)(35,54)(36,55)(37,56)(38,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57), (2,8,12)(3,15,4)(5,10,7)(6,17,18)(9,19,13)(11,14,16)(21,27,31)(22,34,23)(24,29,26)(25,36,37)(28,38,32)(30,33,35)(40,46,50)(41,53,42)(43,48,45)(44,55,56)(47,57,51)(49,52,54) );
G=PermutationGroup([[(1,20,39),(2,21,40),(3,22,41),(4,23,42),(5,24,43),(6,25,44),(7,26,45),(8,27,46),(9,28,47),(10,29,48),(11,30,49),(12,31,50),(13,32,51),(14,33,52),(15,34,53),(16,35,54),(17,36,55),(18,37,56),(19,38,57)], [(20,39),(21,40),(22,41),(23,42),(24,43),(25,44),(26,45),(27,46),(28,47),(29,48),(30,49),(31,50),(32,51),(33,52),(34,53),(35,54),(36,55),(37,56),(38,57)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19),(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38),(39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57)], [(2,8,12),(3,15,4),(5,10,7),(6,17,18),(9,19,13),(11,14,16),(21,27,31),(22,34,23),(24,29,26),(25,36,37),(28,38,32),(30,33,35),(40,46,50),(41,53,42),(43,48,45),(44,55,56),(47,57,51),(49,52,54)]])
Matrix representation of S3×C19⋊C3 ►in GL5(𝔽229)
0 | 228 | 0 | 0 | 0 |
1 | 228 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 68 | 204 | 44 |
0 | 0 | 1 | 0 | 70 |
0 | 0 | 0 | 1 | 207 |
134 | 0 | 0 | 0 | 0 |
0 | 134 | 0 | 0 | 0 |
0 | 0 | 73 | 181 | 42 |
0 | 0 | 125 | 48 | 44 |
0 | 0 | 166 | 188 | 108 |
G:=sub<GL(5,GF(229))| [0,1,0,0,0,228,228,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,68,1,0,0,0,204,0,1,0,0,44,70,207],[134,0,0,0,0,0,134,0,0,0,0,0,73,125,166,0,0,181,48,188,0,0,42,44,108] >;
S3×C19⋊C3 in GAP, Magma, Sage, TeX
S_3\times C_{19}\rtimes C_3
% in TeX
G:=Group("S3xC19:C3");
// GroupNames label
G:=SmallGroup(342,10);
// by ID
G=gap.SmallGroup(342,10);
# by ID
G:=PCGroup([4,-2,-3,-3,-19,146,1015]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^19=d^3=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^11>;
// generators/relations
Export
Subgroup lattice of S3×C19⋊C3 in TeX
Character table of S3×C19⋊C3 in TeX