direct product, metacyclic, supersoluble, monomial, A-group
Aliases: C2×C31⋊C6, C62⋊C6, D62⋊C3, D31⋊C6, C31⋊(C2×C6), C31⋊C3⋊C22, (C2×C31⋊C3)⋊C2, SmallGroup(372,7)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C31 — C31⋊C3 — C31⋊C6 — C2×C31⋊C6 |
C31 — C2×C31⋊C6 |
Generators and relations for C2×C31⋊C6
G = < a,b,c | a2=b31=c6=1, ab=ba, ac=ca, cbc-1=b6 >
Character table of C2×C31⋊C6
class | 1 | 2A | 2B | 2C | 3A | 3B | 6A | 6B | 6C | 6D | 6E | 6F | 31A | 31B | 31C | 31D | 31E | 62A | 62B | 62C | 62D | 62E | |
size | 1 | 1 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 31 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ6 | 1 | 1 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ65 | ζ3 | ζ6 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ7 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ32 | ζ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ8 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ3 | ζ65 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ9 | 1 | -1 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ10 | 1 | 1 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ6 | ζ32 | ζ65 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 6 |
ρ11 | 1 | -1 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | linear of order 6 |
ρ12 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 3 |
ρ13 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3123+ζ3122+ζ3117+ζ3114+ζ319+ζ318 | ζ3129+ζ3121+ζ3119+ζ3112+ζ3110+ζ312 | ζ3127+ζ3124+ζ3120+ζ3111+ζ317+ζ314 | ζ3128+ζ3118+ζ3116+ζ3115+ζ3113+ζ313 | ζ3130+ζ3126+ζ3125+ζ316+ζ315+ζ31 | -ζ3129-ζ3121-ζ3119-ζ3112-ζ3110-ζ312 | -ζ3127-ζ3124-ζ3120-ζ3111-ζ317-ζ314 | -ζ3128-ζ3118-ζ3116-ζ3115-ζ3113-ζ313 | -ζ3130-ζ3126-ζ3125-ζ316-ζ315-ζ31 | -ζ3123-ζ3122-ζ3117-ζ3114-ζ319-ζ318 | orthogonal faithful |
ρ14 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3127+ζ3124+ζ3120+ζ3111+ζ317+ζ314 | ζ3130+ζ3126+ζ3125+ζ316+ζ315+ζ31 | ζ3129+ζ3121+ζ3119+ζ3112+ζ3110+ζ312 | ζ3123+ζ3122+ζ3117+ζ3114+ζ319+ζ318 | ζ3128+ζ3118+ζ3116+ζ3115+ζ3113+ζ313 | -ζ3130-ζ3126-ζ3125-ζ316-ζ315-ζ31 | -ζ3129-ζ3121-ζ3119-ζ3112-ζ3110-ζ312 | -ζ3123-ζ3122-ζ3117-ζ3114-ζ319-ζ318 | -ζ3128-ζ3118-ζ3116-ζ3115-ζ3113-ζ313 | -ζ3127-ζ3124-ζ3120-ζ3111-ζ317-ζ314 | orthogonal faithful |
ρ15 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3130+ζ3126+ζ3125+ζ316+ζ315+ζ31 | ζ3123+ζ3122+ζ3117+ζ3114+ζ319+ζ318 | ζ3128+ζ3118+ζ3116+ζ3115+ζ3113+ζ313 | ζ3129+ζ3121+ζ3119+ζ3112+ζ3110+ζ312 | ζ3127+ζ3124+ζ3120+ζ3111+ζ317+ζ314 | -ζ3123-ζ3122-ζ3117-ζ3114-ζ319-ζ318 | -ζ3128-ζ3118-ζ3116-ζ3115-ζ3113-ζ313 | -ζ3129-ζ3121-ζ3119-ζ3112-ζ3110-ζ312 | -ζ3127-ζ3124-ζ3120-ζ3111-ζ317-ζ314 | -ζ3130-ζ3126-ζ3125-ζ316-ζ315-ζ31 | orthogonal faithful |
ρ16 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3130+ζ3126+ζ3125+ζ316+ζ315+ζ31 | ζ3123+ζ3122+ζ3117+ζ3114+ζ319+ζ318 | ζ3128+ζ3118+ζ3116+ζ3115+ζ3113+ζ313 | ζ3129+ζ3121+ζ3119+ζ3112+ζ3110+ζ312 | ζ3127+ζ3124+ζ3120+ζ3111+ζ317+ζ314 | ζ3123+ζ3122+ζ3117+ζ3114+ζ319+ζ318 | ζ3128+ζ3118+ζ3116+ζ3115+ζ3113+ζ313 | ζ3129+ζ3121+ζ3119+ζ3112+ζ3110+ζ312 | ζ3127+ζ3124+ζ3120+ζ3111+ζ317+ζ314 | ζ3130+ζ3126+ζ3125+ζ316+ζ315+ζ31 | orthogonal lifted from C31⋊C6 |
ρ17 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3129+ζ3121+ζ3119+ζ3112+ζ3110+ζ312 | ζ3128+ζ3118+ζ3116+ζ3115+ζ3113+ζ313 | ζ3130+ζ3126+ζ3125+ζ316+ζ315+ζ31 | ζ3127+ζ3124+ζ3120+ζ3111+ζ317+ζ314 | ζ3123+ζ3122+ζ3117+ζ3114+ζ319+ζ318 | ζ3128+ζ3118+ζ3116+ζ3115+ζ3113+ζ313 | ζ3130+ζ3126+ζ3125+ζ316+ζ315+ζ31 | ζ3127+ζ3124+ζ3120+ζ3111+ζ317+ζ314 | ζ3123+ζ3122+ζ3117+ζ3114+ζ319+ζ318 | ζ3129+ζ3121+ζ3119+ζ3112+ζ3110+ζ312 | orthogonal lifted from C31⋊C6 |
ρ18 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3123+ζ3122+ζ3117+ζ3114+ζ319+ζ318 | ζ3129+ζ3121+ζ3119+ζ3112+ζ3110+ζ312 | ζ3127+ζ3124+ζ3120+ζ3111+ζ317+ζ314 | ζ3128+ζ3118+ζ3116+ζ3115+ζ3113+ζ313 | ζ3130+ζ3126+ζ3125+ζ316+ζ315+ζ31 | ζ3129+ζ3121+ζ3119+ζ3112+ζ3110+ζ312 | ζ3127+ζ3124+ζ3120+ζ3111+ζ317+ζ314 | ζ3128+ζ3118+ζ3116+ζ3115+ζ3113+ζ313 | ζ3130+ζ3126+ζ3125+ζ316+ζ315+ζ31 | ζ3123+ζ3122+ζ3117+ζ3114+ζ319+ζ318 | orthogonal lifted from C31⋊C6 |
ρ19 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3128+ζ3118+ζ3116+ζ3115+ζ3113+ζ313 | ζ3127+ζ3124+ζ3120+ζ3111+ζ317+ζ314 | ζ3123+ζ3122+ζ3117+ζ3114+ζ319+ζ318 | ζ3130+ζ3126+ζ3125+ζ316+ζ315+ζ31 | ζ3129+ζ3121+ζ3119+ζ3112+ζ3110+ζ312 | ζ3127+ζ3124+ζ3120+ζ3111+ζ317+ζ314 | ζ3123+ζ3122+ζ3117+ζ3114+ζ319+ζ318 | ζ3130+ζ3126+ζ3125+ζ316+ζ315+ζ31 | ζ3129+ζ3121+ζ3119+ζ3112+ζ3110+ζ312 | ζ3128+ζ3118+ζ3116+ζ3115+ζ3113+ζ313 | orthogonal lifted from C31⋊C6 |
ρ20 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3129+ζ3121+ζ3119+ζ3112+ζ3110+ζ312 | ζ3128+ζ3118+ζ3116+ζ3115+ζ3113+ζ313 | ζ3130+ζ3126+ζ3125+ζ316+ζ315+ζ31 | ζ3127+ζ3124+ζ3120+ζ3111+ζ317+ζ314 | ζ3123+ζ3122+ζ3117+ζ3114+ζ319+ζ318 | -ζ3128-ζ3118-ζ3116-ζ3115-ζ3113-ζ313 | -ζ3130-ζ3126-ζ3125-ζ316-ζ315-ζ31 | -ζ3127-ζ3124-ζ3120-ζ3111-ζ317-ζ314 | -ζ3123-ζ3122-ζ3117-ζ3114-ζ319-ζ318 | -ζ3129-ζ3121-ζ3119-ζ3112-ζ3110-ζ312 | orthogonal faithful |
ρ21 | 6 | -6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3128+ζ3118+ζ3116+ζ3115+ζ3113+ζ313 | ζ3127+ζ3124+ζ3120+ζ3111+ζ317+ζ314 | ζ3123+ζ3122+ζ3117+ζ3114+ζ319+ζ318 | ζ3130+ζ3126+ζ3125+ζ316+ζ315+ζ31 | ζ3129+ζ3121+ζ3119+ζ3112+ζ3110+ζ312 | -ζ3127-ζ3124-ζ3120-ζ3111-ζ317-ζ314 | -ζ3123-ζ3122-ζ3117-ζ3114-ζ319-ζ318 | -ζ3130-ζ3126-ζ3125-ζ316-ζ315-ζ31 | -ζ3129-ζ3121-ζ3119-ζ3112-ζ3110-ζ312 | -ζ3128-ζ3118-ζ3116-ζ3115-ζ3113-ζ313 | orthogonal faithful |
ρ22 | 6 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3127+ζ3124+ζ3120+ζ3111+ζ317+ζ314 | ζ3130+ζ3126+ζ3125+ζ316+ζ315+ζ31 | ζ3129+ζ3121+ζ3119+ζ3112+ζ3110+ζ312 | ζ3123+ζ3122+ζ3117+ζ3114+ζ319+ζ318 | ζ3128+ζ3118+ζ3116+ζ3115+ζ3113+ζ313 | ζ3130+ζ3126+ζ3125+ζ316+ζ315+ζ31 | ζ3129+ζ3121+ζ3119+ζ3112+ζ3110+ζ312 | ζ3123+ζ3122+ζ3117+ζ3114+ζ319+ζ318 | ζ3128+ζ3118+ζ3116+ζ3115+ζ3113+ζ313 | ζ3127+ζ3124+ζ3120+ζ3111+ζ317+ζ314 | orthogonal lifted from C31⋊C6 |
(1 32)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(17 48)(18 49)(19 50)(20 51)(21 52)(22 53)(23 54)(24 55)(25 56)(26 57)(27 58)(28 59)(29 60)(30 61)(31 62)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)(32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62)
(2 27 26 31 6 7)(3 22 20 30 11 13)(4 17 14 29 16 19)(5 12 8 28 21 25)(9 23 15 24 10 18)(33 58 57 62 37 38)(34 53 51 61 42 44)(35 48 45 60 47 50)(36 43 39 59 52 56)(40 54 46 55 41 49)
G:=sub<Sym(62)| (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,61)(31,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62), (2,27,26,31,6,7)(3,22,20,30,11,13)(4,17,14,29,16,19)(5,12,8,28,21,25)(9,23,15,24,10,18)(33,58,57,62,37,38)(34,53,51,61,42,44)(35,48,45,60,47,50)(36,43,39,59,52,56)(40,54,46,55,41,49)>;
G:=Group( (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,57)(27,58)(28,59)(29,60)(30,61)(31,62), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62), (2,27,26,31,6,7)(3,22,20,30,11,13)(4,17,14,29,16,19)(5,12,8,28,21,25)(9,23,15,24,10,18)(33,58,57,62,37,38)(34,53,51,61,42,44)(35,48,45,60,47,50)(36,43,39,59,52,56)(40,54,46,55,41,49) );
G=PermutationGroup([[(1,32),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(17,48),(18,49),(19,50),(20,51),(21,52),(22,53),(23,54),(24,55),(25,56),(26,57),(27,58),(28,59),(29,60),(30,61),(31,62)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31),(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)], [(2,27,26,31,6,7),(3,22,20,30,11,13),(4,17,14,29,16,19),(5,12,8,28,21,25),(9,23,15,24,10,18),(33,58,57,62,37,38),(34,53,51,61,42,44),(35,48,45,60,47,50),(36,43,39,59,52,56),(40,54,46,55,41,49)]])
Matrix representation of C2×C31⋊C6 ►in GL6(𝔽373)
372 | 0 | 0 | 0 | 0 | 0 |
0 | 372 | 0 | 0 | 0 | 0 |
0 | 0 | 372 | 0 | 0 | 0 |
0 | 0 | 0 | 372 | 0 | 0 |
0 | 0 | 0 | 0 | 372 | 0 |
0 | 0 | 0 | 0 | 0 | 372 |
323 | 363 | 144 | 363 | 323 | 372 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
372 | 323 | 363 | 144 | 363 | 323 |
100 | 50 | 204 | 366 | 271 | 109 |
160 | 17 | 169 | 169 | 17 | 160 |
109 | 271 | 366 | 204 | 50 | 100 |
323 | 363 | 144 | 363 | 323 | 372 |
G:=sub<GL(6,GF(373))| [372,0,0,0,0,0,0,372,0,0,0,0,0,0,372,0,0,0,0,0,0,372,0,0,0,0,0,0,372,0,0,0,0,0,0,372],[323,1,0,0,0,0,363,0,1,0,0,0,144,0,0,1,0,0,363,0,0,0,1,0,323,0,0,0,0,1,372,0,0,0,0,0],[1,372,100,160,109,323,0,323,50,17,271,363,0,363,204,169,366,144,0,144,366,169,204,363,0,363,271,17,50,323,0,323,109,160,100,372] >;
C2×C31⋊C6 in GAP, Magma, Sage, TeX
C_2\times C_{31}\rtimes C_6
% in TeX
G:=Group("C2xC31:C6");
// GroupNames label
G:=SmallGroup(372,7);
// by ID
G=gap.SmallGroup(372,7);
# by ID
G:=PCGroup([4,-2,-2,-3,-31,5763,1211]);
// Polycyclic
G:=Group<a,b,c|a^2=b^31=c^6=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^6>;
// generators/relations
Export
Subgroup lattice of C2×C31⋊C6 in TeX
Character table of C2×C31⋊C6 in TeX