Copied to
clipboard

G = C3×S3×C7⋊C3order 378 = 2·33·7

Direct product of C3, S3 and C7⋊C3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C3×S3×C7⋊C3, (S3×C21)⋊C3, C214(C3×S3), C213(C3×C6), (S3×C7)⋊C32, C72(S3×C32), (C3×C21)⋊10C6, C3⋊(C6×C7⋊C3), (C3×C7⋊C3)⋊5C6, (C32×C7⋊C3)⋊4C2, C323(C2×C7⋊C3), SmallGroup(378,48)

Series: Derived Chief Lower central Upper central

C1C21 — C3×S3×C7⋊C3
C1C7C21C3×C21C32×C7⋊C3 — C3×S3×C7⋊C3
C21 — C3×S3×C7⋊C3
C1C3

Generators and relations for C3×S3×C7⋊C3
 G = < a,b,c,d,e | a3=b3=c2=d7=e3=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d4 >

Subgroups: 332 in 64 conjugacy classes, 24 normal (15 characteristic)
C1, C2, C3, C3, S3, C6, C7, C32, C32, C14, C3×S3, C3×S3, C3×C6, C7⋊C3, C7⋊C3, C21, C21, C33, C2×C7⋊C3, S3×C7, C42, S3×C32, C3×C7⋊C3, C3×C7⋊C3, C3×C7⋊C3, C3×C21, S3×C7⋊C3, C6×C7⋊C3, S3×C21, C32×C7⋊C3, C3×S3×C7⋊C3
Quotients: C1, C2, C3, S3, C6, C32, C3×S3, C3×C6, C7⋊C3, C2×C7⋊C3, S3×C32, C3×C7⋊C3, S3×C7⋊C3, C6×C7⋊C3, C3×S3×C7⋊C3

Smallest permutation representation of C3×S3×C7⋊C3
On 42 points
Generators in S42
(1 8 15)(2 9 16)(3 10 17)(4 11 18)(5 12 19)(6 13 20)(7 14 21)(22 29 36)(23 30 37)(24 31 38)(25 32 39)(26 33 40)(27 34 41)(28 35 42)
(1 8 15)(2 9 16)(3 10 17)(4 11 18)(5 12 19)(6 13 20)(7 14 21)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 36)(16 37)(17 38)(18 39)(19 40)(20 41)(21 42)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)
(2 3 5)(4 7 6)(9 10 12)(11 14 13)(16 17 19)(18 21 20)(23 24 26)(25 28 27)(30 31 33)(32 35 34)(37 38 40)(39 42 41)

G:=sub<Sym(42)| (1,8,15)(2,9,16)(3,10,17)(4,11,18)(5,12,19)(6,13,20)(7,14,21)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42), (1,8,15)(2,9,16)(3,10,17)(4,11,18)(5,12,19)(6,13,20)(7,14,21)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41)>;

G:=Group( (1,8,15)(2,9,16)(3,10,17)(4,11,18)(5,12,19)(6,13,20)(7,14,21)(22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42), (1,8,15)(2,9,16)(3,10,17)(4,11,18)(5,12,19)(6,13,20)(7,14,21)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,36)(16,37)(17,38)(18,39)(19,40)(20,41)(21,42), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42), (2,3,5)(4,7,6)(9,10,12)(11,14,13)(16,17,19)(18,21,20)(23,24,26)(25,28,27)(30,31,33)(32,35,34)(37,38,40)(39,42,41) );

G=PermutationGroup([[(1,8,15),(2,9,16),(3,10,17),(4,11,18),(5,12,19),(6,13,20),(7,14,21),(22,29,36),(23,30,37),(24,31,38),(25,32,39),(26,33,40),(27,34,41),(28,35,42)], [(1,8,15),(2,9,16),(3,10,17),(4,11,18),(5,12,19),(6,13,20),(7,14,21),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35)], [(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,36),(16,37),(17,38),(18,39),(19,40),(20,41),(21,42)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42)], [(2,3,5),(4,7,6),(9,10,12),(11,14,13),(16,17,19),(18,21,20),(23,24,26),(25,28,27),(30,31,33),(32,35,34),(37,38,40),(39,42,41)]])

45 conjugacy classes

class 1  2 3A3B3C3D3E3F···3K3L···3Q6A6B6C···6H7A7B14A14B21A21B21C21D21E···21J42A42B42C42D
order12333333···33···3666···67714142121212121···2142424242
size13112227···714···143321···21339933336···69999

45 irreducible representations

dim111111222333366
type+++
imageC1C2C3C3C6C6S3C3×S3C3×S3C7⋊C3C2×C7⋊C3C3×C7⋊C3C6×C7⋊C3S3×C7⋊C3C3×S3×C7⋊C3
kernelC3×S3×C7⋊C3C32×C7⋊C3S3×C7⋊C3S3×C21C3×C7⋊C3C3×C21C3×C7⋊C3C7⋊C3C21C3×S3C32S3C3C3C1
# reps116262162224424

Matrix representation of C3×S3×C7⋊C3 in GL5(𝔽43)

60000
06000
00100
00010
00001
,
60000
036000
00100
00010
00001
,
01000
10000
00100
00010
00001
,
10000
01000
0018191
00100
00010
,
360000
036000
00100
00244242
00010

G:=sub<GL(5,GF(43))| [6,0,0,0,0,0,6,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[6,0,0,0,0,0,36,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,18,1,0,0,0,19,0,1,0,0,1,0,0],[36,0,0,0,0,0,36,0,0,0,0,0,1,24,0,0,0,0,42,1,0,0,0,42,0] >;

C3×S3×C7⋊C3 in GAP, Magma, Sage, TeX

C_3\times S_3\times C_7\rtimes C_3
% in TeX

G:=Group("C3xS3xC7:C3");
// GroupNames label

G:=SmallGroup(378,48);
// by ID

G=gap.SmallGroup(378,48);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-7,723,1359]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^2=d^7=e^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^4>;
// generators/relations

׿
×
𝔽