extension | φ:Q→Aut N | d | ρ | Label | ID |
C21.1(C3xS3) = C9:F7 | φ: C3xS3/C3 → C6 ⊆ Aut C21 | 63 | 6+ | C21.1(C3xS3) | 378,18 |
C21.2(C3xS3) = C9:2F7 | φ: C3xS3/C3 → C6 ⊆ Aut C21 | 63 | 6+ | C21.2(C3xS3) | 378,19 |
C21.3(C3xS3) = C9:5F7 | φ: C3xS3/C3 → C6 ⊆ Aut C21 | 63 | 6+ | C21.3(C3xS3) | 378,20 |
C21.4(C3xS3) = C32:F7 | φ: C3xS3/C3 → C6 ⊆ Aut C21 | 63 | 6+ | C21.4(C3xS3) | 378,22 |
C21.5(C3xS3) = D21:C9 | φ: C3xS3/C3 → C6 ⊆ Aut C21 | 126 | 6 | C21.5(C3xS3) | 378,21 |
C21.6(C3xS3) = C63:C6 | φ: C3xS3/C3 → C6 ⊆ Aut C21 | 63 | 6 | C21.6(C3xS3) | 378,13 |
C21.7(C3xS3) = C63:6C6 | φ: C3xS3/C3 → C6 ⊆ Aut C21 | 63 | 6 | C21.7(C3xS3) | 378,14 |
C21.8(C3xS3) = D9xC7:C3 | φ: C3xS3/C3 → C6 ⊆ Aut C21 | 63 | 6 | C21.8(C3xS3) | 378,15 |
C21.9(C3xS3) = C7:He3:C2 | φ: C3xS3/C3 → C6 ⊆ Aut C21 | 63 | 6 | C21.9(C3xS3) | 378,17 |
C21.10(C3xS3) = S3xC7:C9 | φ: C3xS3/S3 → C3 ⊆ Aut C21 | 126 | 6 | C21.10(C3xS3) | 378,16 |
C21.11(C3xS3) = C3xD63 | φ: C3xS3/C32 → C2 ⊆ Aut C21 | 126 | 2 | C21.11(C3xS3) | 378,36 |
C21.12(C3xS3) = He3:D7 | φ: C3xS3/C32 → C2 ⊆ Aut C21 | 63 | 6+ | C21.12(C3xS3) | 378,38 |
C21.13(C3xS3) = D63:C3 | φ: C3xS3/C32 → C2 ⊆ Aut C21 | 63 | 6+ | C21.13(C3xS3) | 378,39 |
C21.14(C3xS3) = C9xD21 | φ: C3xS3/C32 → C2 ⊆ Aut C21 | 126 | 2 | C21.14(C3xS3) | 378,37 |
C21.15(C3xS3) = D9xC21 | φ: C3xS3/C32 → C2 ⊆ Aut C21 | 126 | 2 | C21.15(C3xS3) | 378,32 |
C21.16(C3xS3) = C7xC32:C6 | φ: C3xS3/C32 → C2 ⊆ Aut C21 | 63 | 6 | C21.16(C3xS3) | 378,34 |
C21.17(C3xS3) = C7xC9:C6 | φ: C3xS3/C32 → C2 ⊆ Aut C21 | 63 | 6 | C21.17(C3xS3) | 378,35 |
C21.18(C3xS3) = S3xC63 | central extension (φ=1) | 126 | 2 | C21.18(C3xS3) | 378,33 |