Extensions 1→N→G→Q→1 with N=C21 and Q=C3xS3

Direct product G=NxQ with N=C21 and Q=C3xS3
dρLabelID
S3xC3xC21126S3xC3xC21378,54

Semidirect products G=N:Q with N=C21 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
C21:1(C3xS3) = C32:4F7φ: C3xS3/C3C6 ⊆ Aut C2163C21:1(C3xS3)378,51
C21:2(C3xS3) = C3xC3:F7φ: C3xS3/C3C6 ⊆ Aut C21426C21:2(C3xS3)378,49
C21:3(C3xS3) = C3:S3xC7:C3φ: C3xS3/C3C6 ⊆ Aut C2163C21:3(C3xS3)378,50
C21:4(C3xS3) = C3xS3xC7:C3φ: C3xS3/S3C3 ⊆ Aut C21426C21:4(C3xS3)378,48
C21:5(C3xS3) = C3xC3:D21φ: C3xS3/C32C2 ⊆ Aut C21126C21:5(C3xS3)378,57
C21:6(C3xS3) = C32xD21φ: C3xS3/C32C2 ⊆ Aut C21126C21:6(C3xS3)378,55
C21:7(C3xS3) = C3:S3xC21φ: C3xS3/C32C2 ⊆ Aut C21126C21:7(C3xS3)378,56

Non-split extensions G=N.Q with N=C21 and Q=C3xS3
extensionφ:Q→Aut NdρLabelID
C21.1(C3xS3) = C9:F7φ: C3xS3/C3C6 ⊆ Aut C21636+C21.1(C3xS3)378,18
C21.2(C3xS3) = C9:2F7φ: C3xS3/C3C6 ⊆ Aut C21636+C21.2(C3xS3)378,19
C21.3(C3xS3) = C9:5F7φ: C3xS3/C3C6 ⊆ Aut C21636+C21.3(C3xS3)378,20
C21.4(C3xS3) = C32:F7φ: C3xS3/C3C6 ⊆ Aut C21636+C21.4(C3xS3)378,22
C21.5(C3xS3) = D21:C9φ: C3xS3/C3C6 ⊆ Aut C211266C21.5(C3xS3)378,21
C21.6(C3xS3) = C63:C6φ: C3xS3/C3C6 ⊆ Aut C21636C21.6(C3xS3)378,13
C21.7(C3xS3) = C63:6C6φ: C3xS3/C3C6 ⊆ Aut C21636C21.7(C3xS3)378,14
C21.8(C3xS3) = D9xC7:C3φ: C3xS3/C3C6 ⊆ Aut C21636C21.8(C3xS3)378,15
C21.9(C3xS3) = C7:He3:C2φ: C3xS3/C3C6 ⊆ Aut C21636C21.9(C3xS3)378,17
C21.10(C3xS3) = S3xC7:C9φ: C3xS3/S3C3 ⊆ Aut C211266C21.10(C3xS3)378,16
C21.11(C3xS3) = C3xD63φ: C3xS3/C32C2 ⊆ Aut C211262C21.11(C3xS3)378,36
C21.12(C3xS3) = He3:D7φ: C3xS3/C32C2 ⊆ Aut C21636+C21.12(C3xS3)378,38
C21.13(C3xS3) = D63:C3φ: C3xS3/C32C2 ⊆ Aut C21636+C21.13(C3xS3)378,39
C21.14(C3xS3) = C9xD21φ: C3xS3/C32C2 ⊆ Aut C211262C21.14(C3xS3)378,37
C21.15(C3xS3) = D9xC21φ: C3xS3/C32C2 ⊆ Aut C211262C21.15(C3xS3)378,32
C21.16(C3xS3) = C7xC32:C6φ: C3xS3/C32C2 ⊆ Aut C21636C21.16(C3xS3)378,34
C21.17(C3xS3) = C7xC9:C6φ: C3xS3/C32C2 ⊆ Aut C21636C21.17(C3xS3)378,35
C21.18(C3xS3) = S3xC63central extension (φ=1)1262C21.18(C3xS3)378,33

׿
x
:
Z
F
o
wr
Q
<