Copied to
clipboard

G = D185order 370 = 2·5·37

Dihedral group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: D185, C37⋊D5, C5⋊D37, C1851C2, sometimes denoted D370 or Dih185 or Dih370, SmallGroup(370,3)

Series: Derived Chief Lower central Upper central

C1C185 — D185
C1C37C185 — D185
C185 — D185
C1

Generators and relations for D185
 G = < a,b | a185=b2=1, bab=a-1 >

185C2
37D5
5D37

Smallest permutation representation of D185
On 185 points
Generators in S185
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185)
(1 185)(2 184)(3 183)(4 182)(5 181)(6 180)(7 179)(8 178)(9 177)(10 176)(11 175)(12 174)(13 173)(14 172)(15 171)(16 170)(17 169)(18 168)(19 167)(20 166)(21 165)(22 164)(23 163)(24 162)(25 161)(26 160)(27 159)(28 158)(29 157)(30 156)(31 155)(32 154)(33 153)(34 152)(35 151)(36 150)(37 149)(38 148)(39 147)(40 146)(41 145)(42 144)(43 143)(44 142)(45 141)(46 140)(47 139)(48 138)(49 137)(50 136)(51 135)(52 134)(53 133)(54 132)(55 131)(56 130)(57 129)(58 128)(59 127)(60 126)(61 125)(62 124)(63 123)(64 122)(65 121)(66 120)(67 119)(68 118)(69 117)(70 116)(71 115)(72 114)(73 113)(74 112)(75 111)(76 110)(77 109)(78 108)(79 107)(80 106)(81 105)(82 104)(83 103)(84 102)(85 101)(86 100)(87 99)(88 98)(89 97)(90 96)(91 95)(92 94)

G:=sub<Sym(185)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185), (1,185)(2,184)(3,183)(4,182)(5,181)(6,180)(7,179)(8,178)(9,177)(10,176)(11,175)(12,174)(13,173)(14,172)(15,171)(16,170)(17,169)(18,168)(19,167)(20,166)(21,165)(22,164)(23,163)(24,162)(25,161)(26,160)(27,159)(28,158)(29,157)(30,156)(31,155)(32,154)(33,153)(34,152)(35,151)(36,150)(37,149)(38,148)(39,147)(40,146)(41,145)(42,144)(43,143)(44,142)(45,141)(46,140)(47,139)(48,138)(49,137)(50,136)(51,135)(52,134)(53,133)(54,132)(55,131)(56,130)(57,129)(58,128)(59,127)(60,126)(61,125)(62,124)(63,123)(64,122)(65,121)(66,120)(67,119)(68,118)(69,117)(70,116)(71,115)(72,114)(73,113)(74,112)(75,111)(76,110)(77,109)(78,108)(79,107)(80,106)(81,105)(82,104)(83,103)(84,102)(85,101)(86,100)(87,99)(88,98)(89,97)(90,96)(91,95)(92,94)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185), (1,185)(2,184)(3,183)(4,182)(5,181)(6,180)(7,179)(8,178)(9,177)(10,176)(11,175)(12,174)(13,173)(14,172)(15,171)(16,170)(17,169)(18,168)(19,167)(20,166)(21,165)(22,164)(23,163)(24,162)(25,161)(26,160)(27,159)(28,158)(29,157)(30,156)(31,155)(32,154)(33,153)(34,152)(35,151)(36,150)(37,149)(38,148)(39,147)(40,146)(41,145)(42,144)(43,143)(44,142)(45,141)(46,140)(47,139)(48,138)(49,137)(50,136)(51,135)(52,134)(53,133)(54,132)(55,131)(56,130)(57,129)(58,128)(59,127)(60,126)(61,125)(62,124)(63,123)(64,122)(65,121)(66,120)(67,119)(68,118)(69,117)(70,116)(71,115)(72,114)(73,113)(74,112)(75,111)(76,110)(77,109)(78,108)(79,107)(80,106)(81,105)(82,104)(83,103)(84,102)(85,101)(86,100)(87,99)(88,98)(89,97)(90,96)(91,95)(92,94) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185)], [(1,185),(2,184),(3,183),(4,182),(5,181),(6,180),(7,179),(8,178),(9,177),(10,176),(11,175),(12,174),(13,173),(14,172),(15,171),(16,170),(17,169),(18,168),(19,167),(20,166),(21,165),(22,164),(23,163),(24,162),(25,161),(26,160),(27,159),(28,158),(29,157),(30,156),(31,155),(32,154),(33,153),(34,152),(35,151),(36,150),(37,149),(38,148),(39,147),(40,146),(41,145),(42,144),(43,143),(44,142),(45,141),(46,140),(47,139),(48,138),(49,137),(50,136),(51,135),(52,134),(53,133),(54,132),(55,131),(56,130),(57,129),(58,128),(59,127),(60,126),(61,125),(62,124),(63,123),(64,122),(65,121),(66,120),(67,119),(68,118),(69,117),(70,116),(71,115),(72,114),(73,113),(74,112),(75,111),(76,110),(77,109),(78,108),(79,107),(80,106),(81,105),(82,104),(83,103),(84,102),(85,101),(86,100),(87,99),(88,98),(89,97),(90,96),(91,95),(92,94)]])

94 conjugacy classes

class 1  2 5A5B37A···37R185A···185BT
order125537···37185···185
size1185222···22···2

94 irreducible representations

dim11222
type+++++
imageC1C2D5D37D185
kernelD185C185C37C5C1
# reps1121872

Matrix representation of D185 in GL2(𝔽1481) generated by

618918
5631040
,
618918
147863
G:=sub<GL(2,GF(1481))| [618,563,918,1040],[618,147,918,863] >;

D185 in GAP, Magma, Sage, TeX

D_{185}
% in TeX

G:=Group("D185");
// GroupNames label

G:=SmallGroup(370,3);
// by ID

G=gap.SmallGroup(370,3);
# by ID

G:=PCGroup([3,-2,-5,-37,49,3242]);
// Polycyclic

G:=Group<a,b|a^185=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D185 in TeX

׿
×
𝔽