Extensions 1→N→G→Q→1 with N=S3×C10 and Q=C6

Direct product G=N×Q with N=S3×C10 and Q=C6
dρLabelID
S3×C2×C30120S3xC2xC30360,158

Semidirect products G=N:Q with N=S3×C10 and Q=C6
extensionφ:Q→Out NdρLabelID
(S3×C10)⋊1C6 = C3×C15⋊D4φ: C6/C3C2 ⊆ Out S3×C10604(S3xC10):1C6360,61
(S3×C10)⋊2C6 = C3×C5⋊D12φ: C6/C3C2 ⊆ Out S3×C101204(S3xC10):2C6360,63
(S3×C10)⋊3C6 = S3×C6×D5φ: C6/C3C2 ⊆ Out S3×C10604(S3xC10):3C6360,151
(S3×C10)⋊4C6 = C15×D12φ: C6/C3C2 ⊆ Out S3×C101202(S3xC10):4C6360,97
(S3×C10)⋊5C6 = C15×C3⋊D4φ: C6/C3C2 ⊆ Out S3×C10602(S3xC10):5C6360,99

Non-split extensions G=N.Q with N=S3×C10 and Q=C6
extensionφ:Q→Out NdρLabelID
(S3×C10).C6 = C3×S3×Dic5φ: C6/C3C2 ⊆ Out S3×C101204(S3xC10).C6360,59
(S3×C10).2C6 = S3×C60φ: trivial image1202(S3xC10).2C6360,96

׿
×
𝔽