Extensions 1→N→G→Q→1 with N=S3×C6 and Q=C10

Direct product G=N×Q with N=S3×C6 and Q=C10
dρLabelID
S3×C2×C30120S3xC2xC30360,158

Semidirect products G=N:Q with N=S3×C6 and Q=C10
extensionφ:Q→Out NdρLabelID
(S3×C6)⋊1C10 = C5×D6⋊S3φ: C10/C5C2 ⊆ Out S3×C61204(S3xC6):1C10360,74
(S3×C6)⋊2C10 = C5×C3⋊D12φ: C10/C5C2 ⊆ Out S3×C6604(S3xC6):2C10360,75
(S3×C6)⋊3C10 = C15×D12φ: C10/C5C2 ⊆ Out S3×C61202(S3xC6):3C10360,97
(S3×C6)⋊4C10 = C15×C3⋊D4φ: C10/C5C2 ⊆ Out S3×C6602(S3xC6):4C10360,99
(S3×C6)⋊5C10 = S32×C10φ: C10/C5C2 ⊆ Out S3×C6604(S3xC6):5C10360,153

Non-split extensions G=N.Q with N=S3×C6 and Q=C10
extensionφ:Q→Out NdρLabelID
(S3×C6).C10 = C5×S3×Dic3φ: C10/C5C2 ⊆ Out S3×C61204(S3xC6).C10360,72
(S3×C6).2C10 = S3×C60φ: trivial image1202(S3xC6).2C10360,96

׿
×
𝔽