Extensions 1→N→G→Q→1 with N=C6 and Q=C2×C30

Direct product G=N×Q with N=C6 and Q=C2×C30
dρLabelID
C2×C6×C30360C2xC6xC30360,162

Semidirect products G=N:Q with N=C6 and Q=C2×C30
extensionφ:Q→Aut NdρLabelID
C6⋊(C2×C30) = S3×C2×C30φ: C2×C30/C30C2 ⊆ Aut C6120C6:(C2xC30)360,158

Non-split extensions G=N.Q with N=C6 and Q=C2×C30
extensionφ:Q→Aut NdρLabelID
C6.1(C2×C30) = C15×Dic6φ: C2×C30/C30C2 ⊆ Aut C61202C6.1(C2xC30)360,95
C6.2(C2×C30) = S3×C60φ: C2×C30/C30C2 ⊆ Aut C61202C6.2(C2xC30)360,96
C6.3(C2×C30) = C15×D12φ: C2×C30/C30C2 ⊆ Aut C61202C6.3(C2xC30)360,97
C6.4(C2×C30) = Dic3×C30φ: C2×C30/C30C2 ⊆ Aut C6120C6.4(C2xC30)360,98
C6.5(C2×C30) = C15×C3⋊D4φ: C2×C30/C30C2 ⊆ Aut C6602C6.5(C2xC30)360,99
C6.6(C2×C30) = D4×C45central extension (φ=1)1802C6.6(C2xC30)360,31
C6.7(C2×C30) = Q8×C45central extension (φ=1)3602C6.7(C2xC30)360,32
C6.8(C2×C30) = D4×C3×C15central extension (φ=1)180C6.8(C2xC30)360,116
C6.9(C2×C30) = Q8×C3×C15central extension (φ=1)360C6.9(C2xC30)360,117

׿
×
𝔽