Extensions 1→N→G→Q→1 with N=C2×C30 and Q=C6

Direct product G=N×Q with N=C2×C30 and Q=C6
dρLabelID
C2×C6×C30360C2xC6xC30360,162

Semidirect products G=N:Q with N=C2×C30 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C2×C30)⋊1C6 = A4×D15φ: C6/C1C6 ⊆ Aut C2×C30606+(C2xC30):1C6360,144
(C2×C30)⋊2C6 = C3×D5×A4φ: C6/C1C6 ⊆ Aut C2×C30606(C2xC30):2C6360,142
(C2×C30)⋊3C6 = C5×S3×A4φ: C6/C1C6 ⊆ Aut C2×C30606(C2xC30):3C6360,143
(C2×C30)⋊4C6 = A4×C30φ: C6/C2C3 ⊆ Aut C2×C30903(C2xC30):4C6360,156
(C2×C30)⋊5C6 = D4×C3×C15φ: C6/C3C2 ⊆ Aut C2×C30180(C2xC30):5C6360,116
(C2×C30)⋊6C6 = C3×C157D4φ: C6/C3C2 ⊆ Aut C2×C30602(C2xC30):6C6360,104
(C2×C30)⋊7C6 = C2×C6×D15φ: C6/C3C2 ⊆ Aut C2×C30120(C2xC30):7C6360,159
(C2×C30)⋊8C6 = C32×C5⋊D4φ: C6/C3C2 ⊆ Aut C2×C30180(C2xC30):8C6360,94
(C2×C30)⋊9C6 = D5×C62φ: C6/C3C2 ⊆ Aut C2×C30180(C2xC30):9C6360,157
(C2×C30)⋊10C6 = C15×C3⋊D4φ: C6/C3C2 ⊆ Aut C2×C30602(C2xC30):10C6360,99
(C2×C30)⋊11C6 = S3×C2×C30φ: C6/C3C2 ⊆ Aut C2×C30120(C2xC30):11C6360,158

Non-split extensions G=N.Q with N=C2×C30 and Q=C6
extensionφ:Q→Aut NdρLabelID
(C2×C30).C6 = D5×C3.A4φ: C6/C1C6 ⊆ Aut C2×C30906(C2xC30).C6360,42
(C2×C30).2C6 = C10×C3.A4φ: C6/C2C3 ⊆ Aut C2×C30903(C2xC30).2C6360,46
(C2×C30).3C6 = D4×C45φ: C6/C3C2 ⊆ Aut C2×C301802(C2xC30).3C6360,31
(C2×C30).4C6 = C6×Dic15φ: C6/C3C2 ⊆ Aut C2×C30120(C2xC30).4C6360,103
(C2×C30).5C6 = C18×Dic5φ: C6/C3C2 ⊆ Aut C2×C30360(C2xC30).5C6360,18
(C2×C30).6C6 = C9×C5⋊D4φ: C6/C3C2 ⊆ Aut C2×C301802(C2xC30).6C6360,19
(C2×C30).7C6 = D5×C2×C18φ: C6/C3C2 ⊆ Aut C2×C30180(C2xC30).7C6360,47
(C2×C30).8C6 = C3×C6×Dic5φ: C6/C3C2 ⊆ Aut C2×C30360(C2xC30).8C6360,93
(C2×C30).9C6 = Dic3×C30φ: C6/C3C2 ⊆ Aut C2×C30120(C2xC30).9C6360,98

׿
×
𝔽