Extensions 1→N→G→Q→1 with N=C5×Dic3 and Q=S3

Direct product G=N×Q with N=C5×Dic3 and Q=S3
dρLabelID
C5×S3×Dic31204C5xS3xDic3360,72

Semidirect products G=N:Q with N=C5×Dic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5×Dic3)⋊1S3 = Dic3×D15φ: S3/C3C2 ⊆ Out C5×Dic31204-(C5xDic3):1S3360,77
(C5×Dic3)⋊2S3 = C6.D30φ: S3/C3C2 ⊆ Out C5×Dic3604+(C5xDic3):2S3360,79
(C5×Dic3)⋊3S3 = C3⋊D60φ: S3/C3C2 ⊆ Out C5×Dic3604+(C5xDic3):3S3360,81
(C5×Dic3)⋊4S3 = C5×C3⋊D12φ: S3/C3C2 ⊆ Out C5×Dic3604(C5xDic3):4S3360,75
(C5×Dic3)⋊5S3 = C5×C6.D6φ: trivial image604(C5xDic3):5S3360,73

Non-split extensions G=N.Q with N=C5×Dic3 and Q=S3
extensionφ:Q→Out NdρLabelID
(C5×Dic3).1S3 = C3⋊Dic30φ: S3/C3C2 ⊆ Out C5×Dic31204-(C5xDic3).1S3360,83
(C5×Dic3).2S3 = C5×C322Q8φ: S3/C3C2 ⊆ Out C5×Dic31204(C5xDic3).2S3360,76

׿
×
𝔽